# OSC simulation update 

Suntao Wang

1. DLR 1 GeV bypass CHESS-U lattice

6/26/2018
/home/dlr/lat/des/osc/mpe/bmad_osc_20180620.lat

m51: 3.1737E-04 m52: -1.3797E-02 m56: 3.5886E-03 m56_t: 1.0531E-04

Damping ratio: $\lambda_{\mathrm{x}} / \lambda_{\mathrm{s}}=33.1$
$\varepsilon_{x_{\_} \max }=4.2510 \mathrm{E}-09 \quad \delta \mathrm{p} / \mathrm{p}_{-\max }=2.9077 \mathrm{E}-03$
n_z= 7.1516
Radiation damping time $\sim 0.5 \mathrm{~s}$

## Without incoherent kicks, radiation damping and excitation turned off

Track 1000 particles starting with design equilibrium emittance





## Without incoherent kicks, radiation damping and excitation turned on

Track 1000 particles starting with design equilibrium emittance



The emittances drop initially then start to increase.
Why the emittances blow up when radiation damping and excitation is turned on?












$\Delta s=z_{\text {kicker }}-z_{\text {pickup }}$ increases for all the particles turn after turn Eventually, they are outside the cooling ranges so that the emittance increases.

Track single particle with radiation damping and excitation turned on or off, without OSC



$\Delta \mathrm{s}=\mathrm{Z}_{\mathrm{k}}-\mathrm{Z}_{\mathrm{p}}$ increases and then stabilizes Constant delay ~7E-7 ?
$\Delta s=m_{51}{ }^{*} x+m_{52}{ }^{*} x p+m_{56}{ }^{*} \Delta p / p$ linear part seems to be stable over all the turns

Similar amplitude oscillation around 0 or around 7E-7.

Bypass dependent?

Without incoherent kicks, radiation damping and excitation turned on -- linear delay $\Delta s$



$\Delta \mathrm{s}=\mathrm{m}_{51}{ }^{*} \mathrm{x}+\mathrm{m}_{52}{ }^{*} \mathrm{xp}+\mathrm{m}_{56}{ }^{*} \mathrm{~A} \mathrm{p} / \mathrm{p}$ linear part

With incoherent kicks (1E7 particles), radiation damping and excitation turned on -- linear delay $\Delta \mathrm{s}$



$\Delta \mathrm{s}=\mathrm{m}_{51}{ }^{*} \mathrm{x}+\mathrm{m}_{52}{ }^{*} \mathrm{xp}+\mathrm{m}_{56}{ }^{*} \Delta \mathrm{p} / \mathrm{p}$ linear part

Lattice: /home/dlr/lat/des/osc/mpe/bmad_osc_20180619-2.lat Set $V_{R F}=6 E 5 V, \sigma_{z} \sim 11 \mathrm{~mm}$


Emittance due to IBS:
$N=1 E 7, \quad 1 \sim 1 \mu A, \varepsilon_{x} \sim 2 n m$
$\mathrm{N}=1 \mathrm{E} 9, \quad 1 \sim 0.1 \mathrm{~mA}, \varepsilon_{\mathrm{x}} \sim 22 \mathrm{~nm}$
Can we see cooling with an equilibrium emittance of 22 nm ?



No cooling horizontally
Cooling longitudinally but long damping time.
Since the damping rate is proportional to the gain factor ( $\xi$ ), it is very possible that cooling with low gain ( $\sim 1 \mathrm{E}-10$ ) can be seen with longer tracking time.
x-x', z-z' phase space, xy profiles and histogram

$$
\xi=1 E-6
$$









$x-x^{\prime}, z-z '$ phase space, xy profiles and histogram

$$
\xi=1 E-7
$$









$x-x^{\prime}, z-z '$ phase space, xy profiles and histogram

$$
\xi=1 \mathrm{E}-8
$$









x-x', z-z' phase space, xy profiles and histogram

$$
\xi=1 E-9
$$










The non-Gaussian profile may evolve after a long time.
$x-x^{\prime}, z-z '$ phase space, xy profiles and histogram

$$
\xi=1 E-10
$$










## Summary

- DLR 1GeV bypass lattice seems to work
- Small $\varepsilon_{x}$ (1E7 particles)
- Horizontal and longitudinal cooling
- Large $\varepsilon_{\mathrm{x}}$ (1E9 particles)
- Longitudinal cooling and non-Gaussian x-profile
- Further investigation
- $\Delta \mathrm{s}=\mathrm{Z}_{\mathrm{k}}-\mathrm{Z}_{\mathrm{p}}$
- Incoherent kicks for larger equilibrium emittance

