1. Consider the electric field of a point charge

\[\mathbf{E} = \frac{1}{4\pi \varepsilon_0} \frac{\hat{\mathbf{r}}}{r^2} \]

Which of the following are true?

A) \(\frac{\partial E_x}{\partial y} = \frac{\partial E_y}{\partial x} \)

B) \(\frac{\partial E_y}{\partial z} = \frac{\partial E_z}{\partial y} \)

C) \(\frac{\partial E_z}{\partial x} = \frac{\partial E_x}{\partial z} \)

D) \(\frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z} = 0 \)

E) All of the above

F) None of the above
2. A spherical shell of radius R carries a uniform surface charge density \(\sigma \). What is the electric potential at \(r < R \)?

A) zero

B)

\[
\frac{1}{\epsilon_0} \frac{R^2 \sigma}{r}
\]

C)

\[
\frac{1}{\epsilon_0} R \sigma
\]

D)

\[
\frac{1}{4\pi\epsilon_0} \frac{\sigma}{R}
\]
3. A spherical shell of radius R carries a uniform surface charge density σ. What is the force on a test charge Q at the point $r < R$?

A) zero

B) \[
\frac{Q R^2 \sigma}{\varepsilon_0 r^2}
\]

C) \[
\frac{Q}{4\pi\varepsilon_0 \sigma}
\]

D) \[
\frac{Q \sigma}{4\pi\varepsilon_0 R^2}
\]
4. Consider a thin surface that is a boundary between two regions in space, the region above the boundary and the region below. The surface may or may not carry charge density σ. Which of the following is true?

A)
$$E_{\text{above}}^\perp - E_{\text{below}}^\perp = \frac{\sigma}{\varepsilon_0}$$

B)
$$E_{\text{above}}^\parallel = E_{\text{below}}^\parallel$$

C)
$$E_{\text{above}} - E_{\text{below}} = \frac{\sigma}{\varepsilon_0} \hat{n}, \text{ where } \hat{n} \text{ is the unit vector normal to the surface}$$

D)
$$V_{\text{above}} = V_{\text{below}}$$

E)
$$\frac{\partial V_{\text{above}}}{\partial n} - \frac{\partial V_{\text{below}}}{\partial n} = -\frac{\sigma}{\varepsilon_0}$$

F) All of the above