P3323 quiz8-3 October 14, 2016

- 1. The force on a magnetic dipole moment ${\bf m}$ in a magnetic field ${\bf B}$ is
 - A) zero B) $\mathbf{F} = \mathbf{B} \times \mathbf{m}$ C) $\mathbf{F} = \nabla(\mathbf{B} \times \mathbf{m})$ D) $\mathbf{F} = \nabla(\mathbf{B} \cdot \mathbf{m})$

- 2. The torque on a magnetic dipole moment ${\bf m}$ in a uniform magnetic field ${\bf B}$ is
 - A) zero B) $\mathbf{N} = \mathbf{B} \times \mathbf{m}$ C) $\mathbf{N} = \mathbf{m} \times \mathbf{B}$

D)

$$\mathbf{N} = \nabla (\mathbf{B} \cdot \mathbf{m})$$

- 3. The force on a magnetic dipole moment ${\bf m}$ in a uniform magnetic field ${\bf B}$ is
 - A) zero B) $\mathbf{F} = \mathbf{B} \times \mathbf{m}$ C) $\mathbf{F} = \nabla(\mathbf{B} \times \mathbf{m})$

D)

$$\mathbf{F} = \nabla (\mathbf{B} \cdot \mathbf{m})$$

E) more than one of the above

- 4. Consider an electron circling a nucleus in an atom. The dipole moment $\mathbf{m} = I\mathbf{a}$ where \mathbf{a} is the vector with magnitude equal to the area of the loop and direction perpendicular to the area. The right hand rule relates direction of \mathbf{a} to direction of I. Also I = q/T where T is the period of revolution. The atom is placed in an external magnetic field oriented perpendicular to the current loop so \mathbf{B} and \mathbf{m} are parallel. The effect of the external field is to
 - A) Increase m
 - B) Decrease \mathbf{m}
 - C) Have no effect on **m**
 - D) Depends on whether **B** and **m** are in the same or opposite directions.