P3323 Reflection and Transmission November 21, 2016

Consider a plane wave traveling through a medium with permittivity ϵ_1 and permeability μ_0 normally incident on a medium with permittivity ϵ_2 and permeability μ_0 . We want to determine the fraction of the incident energy that is transmitted through the boundary of the materials, and the fraction of radiation reflected. The waves are propagating in the z-direction and the boundary is the x-y plane at z = 0. Boundary Conditions

$$\begin{aligned} \epsilon_1 E_1^{\perp} &= \epsilon_2 E_2^{\perp}, \quad E_1^{\parallel} = E_2^{\parallel} \\ B_1^{\perp} &= B_2^{\perp}, \quad \frac{1}{\mu_1} B_1^{\parallel} = \frac{1}{\mu_2} B_2^{\parallel} \end{aligned}$$

The incident E and B-fields can be written

$$\begin{split} \tilde{\mathbf{E}}_{I}(z,t) &= \tilde{E}_{0I}e^{i(k_{1}z-\omega t)}\mathbf{\hat{x}} \\ \tilde{\mathbf{B}}_{I}(z,t) &= \frac{1}{v_{1}}\tilde{E}_{0I}e^{i(k_{1}z-\omega t)}\mathbf{\hat{y}} \end{split}$$

1. How is k_1 related to v_1 ?

2. The reflected E-field is written

$$\tilde{\mathbf{E}}_R(z,t) = \tilde{E}_{0R}e^{i(-k_1z-\omega t)}\mathbf{\hat{x}}$$

Write an expression for the reflected magnetic field in terms of $\tilde{E}_{0R}, k_1, \omega$, and v_1 .

3. The transmitted E-field is

$$\tilde{\mathbf{E}}_T(z,t) = \tilde{E}_{0T} e^{i(k_2 z - \omega t)} \hat{\mathbf{x}}$$

Write an expression for the transmitted magnetic field in terms of $\tilde{E}_{0T}, k_2, \omega$, and v_2 .

4. Use the boundary conditions (above) to relate $\tilde{E}_{I0}, \tilde{E}_{R0}$ and \tilde{E}_{T0} .

5. Use the boundary conditions (above) to relate $\tilde{B}_{I0}, \tilde{B}_{R0}$ and \tilde{B}_{T0} .

6. Solve for \tilde{E}_{0R} in terms of \tilde{E}_{0I} and compute the reflection coefficient $R = \frac{I_R}{I_I}$. Write R in terms of the indices of refraction n_1 and n_2 . (Intensity is the time average of the Poynting vector. $I = \frac{1}{2}\epsilon_0 v E_0^2$.)

7. Solve for \tilde{E}_{0T} in terms of \tilde{E}_{0I} and compute the transmission coefficient $T = \frac{I_T}{I_I}$. Write T in terms of the indices of refraction n_1 and n_2 .

8. Show that R + T = 1.