
Physics 3323, Fall 2016 Problem Set 11 due Nov 4, 2014

Reading: Griffiths Ch. 7 & 8

1. Time-varying solenoid

Griffiths 7.12. A long solenoid, of radius a, is driven by an al-
ternating current, so that the field inside the solenoid: B(t) =
B0 cos(ωt)ẑ. A circular loop of wire, of radius a/2 and re-
sistance R, is placed inside the solenoid, and coaxial with it.
Find the current induced in the loop, as a function of time.

SOLUTION: The flux through the loop is

Φ =

∫
B · da = B0 cos(ωt)π

a2

4

E = −dΦ

dt
= B0

πa2

4
ω sin(ωt) = IR.

→ I = B0
πa2

4R
ω sin(ωt).

2. Square loops

Griffiths 7.23 (formerly 7.21). A square loop of wire, of side a
lies midway between two long wires, 3a apart, and in the same
plane. (Actually, the long wires are sides of a large rectangular
loop, but the short ends are so far away that they can be ne-
glected.) A clockwise current I in the square loop is gradually
increasing: dI/dt = k (a constant). Find the emf induced in
the big loop. Which way will the induced current flow?

Figure 1: Square Loop in the Big Loop

SOLUTION: The EMF induced in the big loop will have
magnitude E = dΦ

dt . Its direction is given by Lenz’s law. Since
the clockwise current in the small loop is increasing, the flux
into the page is increasing. This means that the induced
current in the big loop will create flux out of the page and
will be counter-clockwise. Lets label the big loop ‘2’ and the
small loop ‘1’.

E2 =
dΦ2

dt
= M21

dI1

dt
(2.1)

Now M21 is hard to calculate, since the magnetic field
from the small loop is hard to calculate. But the flux through
the small loop from the large loop is easier, since the large
loop is just two long straight currents. The contribution to
the flux from each current is the same. We can use the rela-
tion M21 = M = M12 to calculate the mutual inductance.
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M =
Φ1

I2
= 2

∫ 2a

a

µ0

2πs
a ds =

µ0a

π
ln 2 (2.2)

Now dI1
dt = k, so

E2 =
µ0ak ln 2

π
(2.3)

3. Conductive capacitor

A thin metal plate capacitor of plate separation d is filled
with a medium of conductivity σ and dielectric constant ε.
The plates of the capacitor are circular. A variable voltage
V = V0 sinωt is applied to the capacitor a shown in the fig-
ure. Assuming that the electric field between the plates is
homogeneous, find H in the capacitor.

∿ ε, σ

Figure 2: Conductive Capacitor Arrangement

SOLUTION: Since the electric field is homogeneous, we can
simply write it down as follows.

~E =
V

d
ẑ =

V0

d
sinωt ẑ (3.1)

Now we can use Ampere’s law

~∇× ~H = ~Jf +
∂ ~D

∂t
(3.2)

along with the constitutive relation ~D = ε ~E and ohms law
~J = σ ~E to get ~H. The cylindrical symmetry requires ~H =
Hφ̂. Consider an Amperian loop centered on the axis of sym-
metry with radius s.∮

~H · d~̀=

∫ [
~Jf +

∂ ~D

∂t

]
· d~a =

∫ [
σ ~E + ε

∂ ~E

∂t

]
· d~a (3.3)

H(2πs) =
V0

d
(σ sinωt+ εω cosωt)πs2 (3.4)

~H =
V0s

2d
(σ sinωt+ εω cosωt) φ̂ (3.5)

We see that the answer has a resistive component in phase
with the voltage, and a capacitive component out of phase
with the voltage by π/2.

4. Cable Inductance

Consider a coaxial cable consisting of two long concentric hol-
low conducting cylinders with radii a and b. A current I trav-
els up the inner cylinder, and returns down the outer cylinder.
Determine the self-inductance per unit length, both from us-
ing our identity L = Φ/I, and from comparing the magnetic
energy with the standard circuit form 1

2
LI2.

SOLUTION: The magnetic field is circumferential, so the
relevant flux is that which passes between radius a and b. The
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magnetic field inside the cable is ~B = µ0I
2πs . First we’ll find the

inductance per unit length by using the identity L = Φ/I.

Φ =

∫
~B · d~a =

µ0I

2π

∫ b

a

` ds

s
=
µ0I`

2π
ln
b

a
(4.1)

L

`
=

Φ

I`
=
µ0

2π
ln
b

a
(4.2)

Now we will derive the same formula by comparing the mag-
netic energy with the standard circuit form U = 1

2LI
2.

U =
1

2µ0

∫
B2 dV =

1

2µ0

∫ b

a

µ2
0I

2

4π2s2
2πs` ds (4.3)

U =
µ0I

2`

4π

∫ b

a

ds

s
=
µ0I

2`

4π
ln
b

a
(4.4)

L

`
=

2U

I2`
=
µ0

2π
ln
b

a
(4.5)

5. Induced magnetic field

A fat wire, radius a, carries a constant current I, uniformly
distributed over its cross section. A narrow gap in the wire,
of width w � a, forms a parallel-plate capacitor. Find the
magnetic field in the gap, at a distance s < a from the axis.

SOLUTION: The charge on the surface σ(t) = σ0 + I
πa2

and
the electric field in the gap

E =
σ(t)

ε0
(5.1)

∮
B · dl = µ0ε0

∂

∂t

∫
E · da (5.2)

→ B(s) = µ0I
s

2πa2
φ̂ (5.3)

6. From standing waves to travelling

a) Write the traveling wave Ψ(z, t) = A cos(ωt − kz) as a

superposition of two standing waves.
b) Write the standing wave Ψ(z, t) = A cosωt cos kz as a

superposition of two traveling waves that travel in opposite
directions.
c) Rewrite the following superposition of two traveling waves

Ψ(z, t) = A cos(ωt− kz) +RA cos(ωt+ kz),

where R is also a constant, as a superposition of standing
waves.

SOLUTION: These problems are applications of the follow-
ing identities:

cos (α+ β) = cosα cosβ − sinα sinβ (6.1)

cosα cosβ =
1

2
[cos (α+ β) + cos (α− β)] (6.2)
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a)
Ψ(z, t) = A cos (ωt− kz) (6.3)

= A cosωt cos kz +A sinωt sin kz (6.4)

b)
Ψ(z, t) = A cosωt cos kz (6.5)

=
A

2
[cos (ωt+ kz) + cos (ωt− kz)] (6.6)

c)

Ψ(z, t) = A cos (ωt− kz) +RA cos (ωt+ kz) (6.7)

= A[cosωt cos kz+sinωt sin kz]+RA[cosωt cos kz−sinωt sin kz]
(6.8)

= (1 +R)A cosωt cos kz + (1−R)A sinωt sin kz (6.9)

7. Am I a wave?

Griffiths 9.1. By explicit differentiation, check that the func-
tions

f1(z, t) = Ae−b(z−vt)
2

, f2(z, t) = A sin[b(z − vt)],

and f3(z, t) =
A

b(z − vt)2 + 1

satisfy the wave equation and

f4(z, t) = Ae−b(bz
2+vt), and f5(z, t) = A sin(bz) cos(bvt)3

do not.

SOLUTION:

1.
∂2f1

∂z2
=
[
4b2 (z − vt)2 − 2b

]
Aeb(z−vt)

2
(7.1)

∂2f1

∂t2
=
[
4b2 (z − vt)2 − 2b

]
v2Aeb(z−vt)

2
= v2∂

2f1

∂z2

(7.2)

2.
∂2f2

∂z2
= −b2A sin [b(z − vt)] (7.3)

∂2f2

∂t2
= −(bv)2A sin [b(z − vt)] = v2∂

2f2

∂z2
(7.4)

3.
∂2f3

∂z2
=

2Ab

(b(z − vt)2 + 1)2

[
4b(z − vt)2 − 1

]
(7.5)

∂2f3

∂t2
=

2Abv2

(b(z − vt)2 + 1)2

[
4b(z − vt)2 − 1

]
= v2∂

2f3

∂t2

(7.6)

4.
∂2f4

∂z2
= 2b2

[
2b2z2 − 1

]
Ae−b(bz

2+vt) (7.7)

∂2f4

∂t2
= b2v2Ae−b(bz

2+vt) 6= v2∂
2f4

∂z2
(7.8)

5.
∂2f5

∂z2
= −b2A sin (bz) cos3 (bvt) (7.9)

∂2f5

∂t2
= 3A(bv)2

[
2 cos (bvt) sin2 (bvt)− cos3(bvt)

]
6= v2∂

2f5

∂z2

(7.10)
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8. Circular polarization on a string

Griffiths 9.8. Equation 9.36 describes the most general lin-
early polarized wave on a string . Linear (or “plane”) polar-
ization (so called because the displacement is parallel to a fixed
vector n̂) results from the combination of horizontally and ver-
tically polarized waves of the same phase (Eq. 9.39). If the
two components are of equal amplitude, but out of phase by
90◦ (say, δv = 0, δh = 90◦), the result is a circularly polarized
wave. In that case:

(a) At a fixed point z, show that the string moves in a circle
about the z axis. Does it go clockwise or counterclock-
wise, as you look down the axis toward the origin? How
would you construct a wave circling the other way? (In
optics, the clockwise case is called right circular polar-
ization, and the conterclockwise, left circular polar-
ization.)

(b) Sketch the string at time t = 0.

(c) How would you shake the string in order to produce a
circularly polarized wave?

SOLUTION: We can write this wave as a superposition of
two perpendicular linearly polarized waves with the same am-
plitude, but out of phase by π/2.

f̃(z, t) =
(
Ãx x̂+ Ãy ŷ

)
ei(kz−ωt) (8.1)

= A
(
x̂+ eiπ/2 ŷ

)
ei(kz−ωt) (8.2)

f̃(z, t) = A (x̂+ i ŷ) ei(kz−ωt) (8.3)

a) Let’s pick the point z = 0 to see which way the vector
rotates.

f̃(z, t) = A (x̂+ i ŷ) e−iωt = A (x̂+ i ŷ) (cos (ωt)− i sin (ωt))
(8.4)

Remember that the actual vector is the real part of Eq. (8.4).
This gives the following parametrization.

fx = A cos (ωt) (8.5)

fy = A sin (ωt) (8.6)

This is a parametric equation for a circle of radius A rotating
counter-clockwise as t increases. To get a wave that circles
the other way, we could start with Ãy = Ae−iπ/2 instead of
the positive phase difference.

b) See Figure 3

Figure 3: Plot of circular wave at t = 0

c) To create this wave, you could just grab one end of the
string and swing your arm in a circle.

9. Hey, don’t push me around!

Griffiths 9.10. The intensity of sunlight hitting the earth is
about 1300 W/m2. If sunlight strikes a perfect absorber what
pressure does it exert? How about a perfect reflector? What
fraction of atmospheric pressure does this amount to?
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SOLUTION: For a perfect absorber P = I/c. With I =
1300 W/m2 we have:

P = I/c = 4.34× 10−6 Pa (9.1)

A perfect reflector has twice the pressure

P = 8.67× 10−6 Pa (9.2)

These correspond to 4.3 × 10−11 atm and 8.6 × 10−11 atm
respectively.
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