
Physics 3323, Fall 2016 Problem Set 13 due Friday, Dec 2, 2014

Reading: Finish Griffiths Ch. 9, and 10.2.1, 10.3, and 11.1.1-2

1. Reflecting on polarizations

Griffiths 9.15 (3rd ed.: 9.14). In writing (9.76)

ẼR(z, t) = Ẽ0Re
i(−k1z−ωt)x̂

B̃R(z, t) = − 1

v1
Ẽ0Re

i(−k1z−ωt)ŷ

and (9.77)

ẼT (z, t) = Ẽ0T e
i(k2z−ωt)x̂

B̃T (z, t) =
1

v2
Ẽ0T e

i(k2z−ωt)ŷ

I tacitly assume that the reflected and transmitted waves have
the same polarization as the incident wave - along the x direc-
tion. Prove that this must be so. [Hint: Let the polarization
vectors of the transmitted and relfected waves be

n̂T = cos θT x̂ + sin θT ŷ, n̂R = cos θRx̂ + sin θRŷ

and prove from the boundary conditions that θT = θR = 0.]

SOLUTION: If we allow the reflected and transmitted waves
to have polarization rotated by angles θR and θT respectively,
then the equations describing these waves must be changed
from their form in Griffiths.

Incident:

~EI = Ẽ0Ie
i(k1z−ωt) x̂

~BI = 1
v1
Ẽ0Ie

i(k1z−ωt) ŷ

}
(1.1)

Reflected:

~ER = Ẽ0Re
i(−k1z−ωt)(cos θR x̂ + sin θR ŷ)

~BR = − 1
v1
Ẽ0Re

i(−k1z−ωt)(− sin θR x̂ + cos θR ŷ)

}
(1.2)

Transmitted:

~ET = Ẽ0T e
i(k2z−ωt)(cos θT x̂ + sin θT ŷ)

~BT = 1
v2
Ẽ0T e

i(−k2z−ωt)(− sin θT x̂ + cos θT ŷ)

}
(1.3)

Since there is no component of these waves perpendicular
to the interface, there are two boundary conditions to meet.

(i) ~E
‖
1 = ~E

‖
2

(ii) 1
µ1
~B
‖
1 = 1

µ2
~B
‖
2

(1.4)

Consider the y-component of the first condition and the
x-component of the second at z = 0 and all times.

Ẽ0R sin θR = Ẽ0T sin θT (1.5)

Ẽ0R sin θR = −βẼ0T sin θT , β =
µ1v1
µ2v2

(1.6)

The only way these two equations can be simultaneously sat-
isfied with non-zero Ẽ0R and Ẽ0T is if θR = θT = 0.

2. Why the H?!

Often, ~H is used in discussing electromagnetic waves. There
are two practical reasons for doing so: (1) ~E× ~H is the power
density, and (2) E/H is an impedance.
a) Show that if Ex(z, t) is the standing wave
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Ex = A cosωt cos kz,

then Hy(z, t) is the standing wave

(A/Z) sinωt sin kz,

where Z =
√
µ0/ε0.

b) Find the electric and magnetic energy densities and the

Poynting vector as a function of space and time.
Consider a region of length 1

4
λ extending from a node in Ex to

an antinode in Ex. Sketch a plot of Ex and Hy versus z over
that region at the times t = 0, T/8 and T/4.
c) Sketch a plot of the electric energy density, the magnetic

energy density, and the total energy density over that region
for the same times.
d) Give the direction and magnitude of the Poynting vector

~Sz for those same times.

SOLUTION:

a) It is clear that these are standing waves. We just need to
check that the source-free Maxwell’s equations are satisified.
It is easy to see that the ‘divergence’ equations are satisfied.
We also need to remember the dispersion relation for EM
waves in free space.

ω

k
= c =

1
√
ε0µ0

~∇× ~E = −∂
~B

∂t
= −µ0

∂ ~H

∂t
(2.1)

~∇× ~E =
∂Ex
∂z

ŷ = −kA cosωt sin kz ŷ (2.2)

∂Hy

∂t
= µ0kA cosωt sin kz (2.3)

⇒ Hy = µ0
k

ω
A sinωt sin kz = (A/Z) sinωt sin kz (2.4)

Z =

√
µ0
ε0

It is also quick to check that ~∇× ~H = ∂ ~D
∂t .

b)

uE =
ε0
2
E2 =

ε0
2
A2 cos2 ωt cos2 kz (2.5)

uB =
1

2µ0
B2 =

µ0
2
H2 =

ε0
2
A2 sin2 ωt sin2 kz (2.6)

~S = ~E × ~H =
A2

Z
sinωt cosωt sin kz cos kz ẑ (2.7)

~S =
A2

4Z
sin 2ωt sin 2kz ẑ (2.8)

See Figure ??.

Figure 1: Ex and Hy over a quarter wavelength at different times.
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Figure 2: Energy density over a quarter wavelength

c) See Figure ??

d) In this spatial range and range of time, the Poynting vector
is in the positive z direction. Its magnitude at t = 0 is 0, its
magnitude at t = T/8 is S = A2/4Z, and its magnitude at
t = T/4 is 0 again.

3. Lucite prism

Imagine a Lucite prism (n=1.5) whose cross section is a quar-
ter circle of radius a. As shown in the figure, one flat side
rests on the table, and light is incident normal to the other
side. The region from P to Q on the table is not illuminated
by any light from the prism. Find the distance from the origin
O to the point Q.

SOLUTION: Draw a line from Q tangent to the circle. Call
the tangent point T . Note that 6 QOT is the same as the

Figure 3: Problem 3 figure.

angle of incidence of the ray that exits the prism at point T .
The rays below this ray exit the prism, bend toward the x-axis
and cross it some point further than Q. The rays above this
ray reflect internally and cross the x-axis inside the prism.
Thus 6 QOT is the critical angle for total internal reflection.
sin θc = 1/n.

We can see from the geometry that the distance x = OQ
is given by:

x = a sec θc =
a

cos θc
=

a√
1− sin2 θc

(3.1)

x =
a√

1− (1/1.5)2
≈ 1.34a (3.2)

4. Reflection and transmission with a linear di-
electric

You are building a microwave tower, and wish to protect the
antenna from the nasty upstate NY winter weather. Your
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antenna broadcasts at ν = ω/2π = 10 GHz, and you will con-
struct your shielding from plastic with an index of refraction
n = 2.5. What is the minimum (nonzero) thickness of plas-
tic required to obtain 100% transmission? Assume that the
microwave radiation will be normally incident on the shield.
Important note: You can not solve this problem by apply-
ing the single boundary results we found in class. You must
consider the ~E and ~B boundary conditions at both boundaries
simultaneously.

SOLUTION: First the incident wave,

~E1 = E0
1 x̂ e

i(kz−ωt), ~B1 = E0
1 ŷ e

i(kz−ωt),

where we’ve used that in air n = 1 and B0
1 = E0

1 . And here
we have k = ω/c. We want the 100% transmission condition,
so we won’t write a reflected wave in air.

Next the wave in plastic traveling in the incident direction

~E2 = E0
2 x̂ e

i(k′z−ωt), ~B2 = nE0
2 ŷ e

i(k′z−ωt),

where k′ = nω/c and n = 2.5. Then the reflected wave in the
plastic

~E′2 = −E′02 x̂ ei(−k
′z−ωt), ~B′2 = nE′02 ŷ e

i(−k′z−ωt).

And finally the transmitted wave in air,

~E3 = E0
3 x̂ e

i(kz−ωt), ~B3 = E0
3 ŷ e

i(kz−ωt).

The boundary conditions we have at E‖ and B‖ are con-
tinuous at both z = 0 and z = a where a is the width of the
plastic. We get four equations,

E0
1 = E0

2 − E′02
E0

1 = n(E0
2 + E′02 )

E0
3e
ika = E0

2e
ik′a − E′02 e−ik

′a

E0
3e
ika = n(E0

2e
ik′a + E′02 e

−ik′a).

Combine 1st and 2nd, and combine 3rd and 4th, we get two
equations,

E0
2 − E′02 = n(E0

2 + E′02 )

E0
2e
ik′a − E′02 e−ik

′a = n(E0
2e
ik′a + E′02 e

−ik′a)

Multiply 1st by eik
′a and subtract the 2nd, we get

−E′02 (eik
′a−e−ik′a) = nE′02 (eik

′a−e−ik′a) ⇒ (n+1)E′02 (eik
′a−e−ik′a) = 0,

This means sin k′a = 0, so k′a = mπ where m = 0, 1, 2, ... For
the smallest non-zero thickness, we have

a =
π

k′
=

π

nω/c
= 6 mm,

where we’ve used n = 2.5 and ω/2π = 1010 Hz.

5. Getting dizzy?

Show that

~E = (x̂+ iŷ)E0e
i(ωt−kz), ~H = (−ix̂+ ŷ)

E0

Z
ei(ωt−kz)

represents a circularly polarized wave. If you watch the time
variation of the electric field at a fixed position, will the direc-
tion of the field rotate in the right- or left-handed sense with
respect to the direction of travel (+z)? If you could take a
snapshot of the electric field over space, in which sense would
the direction rotate? Repeat these questions for the magnetic
field.

SOLUTION: First of all, we conclude from inspection that
~E and ~H obey the wave equation. We just need to check
Maxwell’s equations and show that the wave is circularly po-
larized. Maxwells equation:
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1.
~∇ · ~E =

∂Ex
∂x

+
∂Ey
∂y

= 0 (5.1)

2.
~∇ · ~B =

∂Bx
∂x

+
∂By
∂y

= 0 (5.2)

3. ~∇× ~E = −∂ ~B
∂t works if ω/k = v = Z/µ.

~∇× ~E = −∂Ey
∂z

x̂ +
∂Ex
∂z

ŷ = (−x̂− iŷ)kE0e
i(ωt−kz)

(5.3)

−∂
~B

∂t
= −µ∂

~B

∂t
= −µ(x̂ + iŷ)ω(E0/Z)ei(ωt−kz) (5.4)

~∇× ~E = −∂
~B

∂t
(5.5)

4.
~∇× ~H = (ix̂− ŷ)k

E0

Z
ei(ωt−kz) (5.6)

∂ ~D

∂t
= ε

∂ ~E

∂t
= (ix̂− ŷ)εωE0e

i(ωt−kz) (5.7)

~∇× ~H =
∂ ~D

∂t
if ω/k = v = 1/εZ (5.8)

The last two Maxwell’s equations are satisfied if Z =
√
µ/ε

and v = 1/
√
εµ.

Now we need to show that the wave is circularly polarized.
We take the real part of the electric field.

Re[ ~E] = E0 (cos (ωt− kz) x̂− sin (ωt− kz) ŷ) (5.9)

We see that this is the parametrization of a circle. Similarly,

Re[ ~B] =
E0

Z
(sin (ωt− kz) x̂ + cos (ωt− kz) ŷ). (5.10)

A convenient position to look at is z = 0 The electric field
there has the form

~E(0, t) = E0(cosωt x̂− sinωt ŷ) (5.11)

This is a vector that rotates in a left handed sense to +z as
time increases. Now consider a snapshot of the wave at time
t = 0.

~E(z, 0) = E0(cos kz x̂ + sin kz ŷ) (5.12)

This is a vector that rotates in a right handed sense to +z as
z increases.

Since ~H = − i
Z
~E, the magnetic field rotates in the same

sense as the electric field.

6. Field in a box

Show that the electromagnetic fields described by

~E = E0ẑ cos kx cos ky cosωt

and

~H = H0(cos kx sin kyx̂− sin kx cos kyŷ) sinωt

will satisfy Maxwell’s equations for a non absorbing, nonmag-
netic media with index of refraction n if E0 = αH0 and ω = βk.
Determine α and β. These fields can exist in a dielectric en-
closed by a square metal box of dimensions π/k in the x and
y directions and of arbitrary height. What do the E- and H-
fields look like inside the box? Make a sketch of some field
lines.

SOLUTION: Maxwell’s equations:
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1.
~∇ · ~E =

∂Ez
∂z

= 0 (6.1)

2.
~∇ · µ ~H = µ

∂Hx

∂x
+ µ

∂Hy

∂y
(6.2)

= µH0k(− sin kx sin ky + sin kx sin ky) sinωt = 0 (6.3)

3.
~∇× ~E =

∂Ez
∂y

x̂− ∂Ez
∂x

ŷ (6.4)

= −E0k(cos kx sin ky x̂− sin kx cos ky ŷ) cosωt (6.5)

−∂
~B

∂t
= −µH0ω(cos kx sin ky x̂− sin kx cos ky ŷ) cosωt

(6.6)

⇒ E0k = µωH0 (6.7)

4.

~∇× ~H =

(
∂Hy

∂x
− ∂Hx

∂y

)
ẑ (6.8)

= −2H0k cos kx cos ky sinωt ẑ (6.9)

∂ ~D

∂t
= −εE0ω cos kx cos ky sinωt ẑ (6.10)

⇒ εωE0 = 2kH0 (6.11)

The last two Maxwell’s equations define a pair of equa-
tions for α and β.

α = µβ
α = 2

εβ
(6.12)

⇒

α =
√

2µε

β =
√

2
εµ

(6.13)

Figure 4: Electric Field Magnitude (z-direction)

Figure 5: Magnetic Field Vectors
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7. Reflections on transmission

Griffiths 9.14 (3rd ed. 9.13). Calculate the exact reflection
and transmission coefficients, without assuming µ1 = µ2 = µ0.
Confirm that R + T = 1.

SOLUTION: Note from Griffiths equations 9.79 and 9.81
that µ and n only show up in the combination n/µ. Thus if
we replace each n in equations 9.86 and 9.87 with n/µ, we
will have the results we want.

R =

(
n1/µ1 − n2/µ2
n1/µ1 + n2/µ2

)2

(7.1)

T =
4n1n2/µ1µ2

(n1/µ1 + n2/µ2)2
(7.2)

R+ T =
n21/µ

2
1 + n22/µ

2
2 − 2n1n2/µ1µ2 + 4n1n2/µ1µ2
(n1/µ1 + n2/µ2)2

(7.3)

R+ T =
(n1/µ1 + n2/µ2)

2

(n1/µ1 + n2/µ2)2
= 1 (7.4)

8. Don’t get phased

Griffiths 9.16 (3rd ed.: 9.15). Suppose Aeiax + Beicx = Ceicx,
for some nonzero constants A,B,C, a, b, c, and for all x. Prove
that a = b = c and A+B = C.

SOLUTION: First note that Aeiax + Beibx = Ceicx must
be true for all x; in particular x = 0 implies A + B = C.
Also note that this means the first and second derivatives of

the equation should also be true at x = 0. This gives the
following set of equations.

A+B = C
Aa+Bb = Cc
Aa2 +Bb2 = Cc2

(8.1)

If we eliminate C with the first from the second and third we
get:

Aa+Bb = (A+B)c
Aa2 +Bb2 = (A+B)c2

(8.2)

Eliminating c from these gives

(A+B)(Aa2 +Bb2) = (Aa+Bb)2

⇒ A2a2 +B2b2 +AB(a2 + b2) = A2a2 +B2b2 + 2ABab
⇒ AB(a2 + b2 − 2ab) = 0
⇒ (a− b)2 = 0 ⇒ a = b

(8.3)
Plugging this back into the second of Eq. (??) and subtracting
c times the first of Eq. (??) gives:

(A+B) (a− c) = 0 ⇒ a = c (8.4)

Thus we have A+B = C and a = b = c.

9. Energy in a conductor

Griffiths 9.21 (3rd ed.: 9.20).

1. Calculate the (time-averaged) energy density of an elec-
tromagnetic plane wave in a conducting medium (Eq.
9.138). Show that the magnetic contribution always dom-
inates. [Answer : (k2/2µω2)E2

0e
−2κz]

2. Show that the intensity is (κ/2µω)E2
0e
−κz.
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SOLUTION: Throughout this problem, the notation of Grif-
fiths section 9.4 will be used. Griffiths Equation 9.138 gives
the form of the EM waves in a conductor.

~E(z, t) = E0e
−κz cos(kz − ωt+ δE) x̂

~B(z, t) = B0e
−κz cos(kz − ωt+ δE + φ) ŷ

}
(9.1)

The following relations from Griffiths will also be useful.

k = ω

√
εµ

2

[√
1 +

( σ
εω

)2
+ 1

]1/2

κ = ω

√
εµ

2

[√
1 +

( σ
εω

)2
− 1

]1/2

K =
√
k2 + κ2 = ω

√
εµ

√
1 +

( σ
εω

)2
tanφ =

κ

k
B0 = E0

K

ω

a) Let uE be the energy density of the electric field and 〈uE〉
denote its time average.

uE =
ε

2
E2

0e
−2κz cos2(kz − ωt+ δE) (9.2)

Now the time average of cos2(ωt) is 1
2 .

〈uE〉 =
ε

4
E2

0e
−2κz (9.3)

uB =
1

2µ
B2

0e
−2κz cos2(kz − ωt+ δE + φ) (9.4)

〈uB〉 =
1

4µ
B2

0e
−2κz =

ε

4
E2

0

√
1 +

( σ
εω

)2
e−2κz (9.5)

From this we can see that the contribution to the energy
density from the magnetic field is larger than the contribution

from the electric field since
√

1 +
(
σ
εω

)2
> 1.

The total energy density is found by adding the two.

〈u〉 = 〈uB〉+ 〈uE〉 =
ε

4
E2

0

[√
1 +

( σ
εω

)2
+ 1

]
e−2κz (9.6)

Now we note that from the definition of k√
1 +

( σ
εω

)2
+ 1 =

2k2

εµω2
(9.7)

〈u〉 =
k2

2µω2
E2

0e
−2κz (9.8)

b) I = 〈S〉, so we need to find the Poynting vector.

~S =
1

µ
~E × ~B

~S =
1

µ
E0B0 cos(kz − ωt+ δE) cos(kz − ωt+ δE + φ) ẑ (9.9)

We can rewrite the second trig function as

cos(kz−ωt+δE+φ) = cos(kz−ωt+δE) cosφ−sin(kz−ωt+δE) sinφ
(9.10)

The second term will average to 0, since sinx and cosx inte-
grate to zero over one period.

I = 〈 1
µ
E0B0 cos2(kz − ωt+ δE) cosφ〉 (9.11)

I =
1

2µ
E0B0 cosφ (9.12)
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Now we need to get cosφ from the expression for tanφ. This
can be done by drawing a right triangle with one angle φ,
opposite leg κ and adjacent leg k.

cosφ =
k√

k2 + κ2
=

k

K
(9.13)

B0 cosφ = E0
K

ω

k

K
= E0

k

ω
(9.14)

I =
k

2µω
E2

0e
−2κz (9.15)

10. Any reception?

Consider a car entering a tunnel that is 15 m wide and 4 m
high, and that the walls are good conductors. Determine
whether or not AM radio waves will propagate in the tunnel.

SOLUTION: The tunnel is a waveguide. The lowest cuttoff
frequency is for the TE10 mode. Then ω10 = cπ/a where a
is the larger dimension of the guide.

fc =
ω10

2π
=

c

2a
=

3× 108

2× 15
= 1× 107 = 10MHz

AM radio frequencies are sub MHz. The AM waves will not
propagate.

11. Just one mode, please

Griffiths 9.29 (3rd ed.: 9.28). Consider a rectangular wave
guide with dimensions 2.28 cm × 1.01 cm. What TE modes
will propagate in this wave guide, if the driving frequency is

1.70 × 1010 Hz? Suppose you wanted to excite only one TE
mode; what range of frequencies could you use? What are the
corresponding wavelengths (in open space)?

SOLUTION:

fmn =
ωmn
2π

=
c

2

√
(m/a)2 + (n/b)2

f10 = = 6.58× 109 → λ = c/f = 4.56cm

f01 = 1.49× 1010 →= 2.02cm

f11 = 1.62× 1010 →= 1.85cm

f20 = 1.32× 1010 →= 2.28cm

f02 = 2.97× 1010 →= 1.01cm

f12 = 3.04× 1010 →= 0.99cm

f21 = 1.98× 1010 →= 1.5cm

f30 = 1.97× 1010 →= 1.52cm

f31 = 2.47× 1010 →= 1.2cm

The cutoff frequencies for T10, T01, T11, T20 are all below 1.7×
1010 so the driving frequency will propagate in these TE
modes (but no others). To excite only one TE mode, the
driving frequency should be in the range 6.58 × 109 < f <
1.32× 1010 and 4.56cm > λ > 2.28cm.
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