
Physics 3323, Fall 2016 Problem Set 2 due Sep 9, 2016

1. What’s my charge?

A spherical region of radius R is filled with a charge distri-
bution that gives rise to an electric field inside of the form
~E = (E0/R

2)r~r, where ~r is the radius vector drawn for the
center of the region, and E0 is a constant. Find the charge
density inside the region.

SOLUTION:
Here we use Gauss’s law in differential form.
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2. Electric Field of Coaxial Cable

A long coaxial cable carries a uniform volume charge density ρ
throughout its solid inner cylinder of radius a, and a uniform
surface charge density σ on its thin outer cylinder of radius b.
The cylinders are concentric and the cable is overall electri-
cally neutral.
a) Find the electric field ~E everywhere in space.

b) Sketch the field.

c) Sketch the magnitude of the field as a function of the

distance from the cylinders’ center.

SOLUTION:
The first thing to note is that for the cable to be electrically
neutral we need Vinρ + Aoutσ = 0 wher Vin is the volume of
the inner cylinder and Aout is the surface area of the outer
cylinder. This leads to

πa2Lρ+ 2πbLσ = 0 ⇒ σ = −a
2

2b
ρ (2.1)

a)By symmetry for a long cable the electric field should be
in the radial (ŝ) direction and can only depend on s. We will
imagine cylindrical Gaussian surfaces of various radii whose
axes coincide with the axis of the cable. Then ~E is parallel
to d ~A so that ~E · d ~A = E dA. The ends of the surface will
not contribute since ~E · d ~A = 0 there.

1

ε0

∫
ρ dV =

∫
~E · d ~A = E2πsL

E =
1

2πε0sL

∫
ρ dV (2.2)

We need to consider three different regions: the region where
s < a, where a < s < b and where s > b.
For s < a: ∫

ρ dV = πs2Lρ

~E =
sρ

2ε0
ŝ (2.3)

For a < s < b: ∫
ρ dV = πa2Lρ
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~E =
a2ρ

2sε0
ŝ (2.4)

For a > b: ∫
ρ dV = πa2Lρ+ 2πbσL = 0

~E = 0 (2.5)

b)

c)

3. Gradients of 1/r

Demonstrate that

~∇~r
1

|~r − ~r1|
= −~∇~r1

1

|~r − ~r1|
= − ~r − ~r1
|~r − ~r1|3

(3.1)

SOLUTION:
The most straight-forward way of doing this is to write both
of the first two in terms of the coordinates and show they
both are equal to the third.
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= −2(x−x1 )̂i−2(y−y1 )̂j−2(z−z1)k̂
2((x−x1)2+(y−y1)2+(z−z1)2)3/2

= − ~r−~r1
|~r−~r1|3 (3.3)

4. Makes your hair curl

By examining the line integral of ~G around a small loop in the
xy plane with diagonal corners at (x, y) and (x+ dx, y + dy),

prove the standard form for curl~G = ~∇ × ~G in Cartesian co-
ordinates. Consider what component this line integral allows
you to evaluate, and use symmetry to argue the forms for the
other components.

SOLUTION: The line integral of ~G around this loop should
be the same as the z-component of the curl of ~G multiplied
by the area of the loop. This is just Stokes theorem.∮

~G · d~l =

∫ (
~∇× ~G

)
· d ~A (4.1)

First we work with the left hand side. Constructing the rect-
angular loop in the xy-plane, we see there are four line seg-
ments to add up. For small dx, dy and smooth ~G we can
just multiply the value of the parallel component of ~G at the

midpoint of the line by the length of the line segment. This
approximation becomes exact in the limit dx, dy → 0. We
then have for the left hand side of Eq. (??):
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For the right hand side of Eq. (??), we approximate the func-
tion ~G as constant over the area. (If you like, use the midpoint
of the area to match the derivatives which were calculated at
the midpoints of the lines. In the limit dx, dy → 0 these
details don’t matter). Thus the right hand size is(

~∇× ~G
)
z
dxdy (4.3)

Equating the two we have(
~∇× ~G

)
z

=
∂Gy
∂x
− ∂Gx

∂y
(4.4)

The other components of
(
~∇× ~G

)
can be found in the same

manner by cyclic permutation x→ y → z → x etc.

5. Div and Curl

Consider the field ~E = (2x2−2xy−2y2)x̂+(−x2−4xy+y2)ŷ.
a) Is it irrotational? If so, what is the potential function?
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b) Calculate ~∇ · ~E.

SOLUTION:

a)

~∇× ~E =

(
∂Ez
∂y
− ∂Ey

∂z

)
î+

(
∂Ex
∂z
− ∂Ez

∂y

)
ĵ+

(
∂Ey
∂x
− ∂Ex

∂y

)
k̂

= 0̂i + 0̂j + (−2x− 4y)− (−2x− 4y)k̂ = ~0

The vector field is irrotational. The potential V can be found
by integrating the components of ~E since Ex = −∂V

∂x etc.
Integrating the x component gives

V =

∫ [
2y2 + 2xy − 2x2

]
dx = 2y2x+ x2y − 2x3

3
+ f(y).

Here f(y) is some function of y (analogous to the constant of
integration in one-dimensional calculus).
Integrating the y component gives

V =

∫ [
x2 + 4xy − y2

]
dy = xy + 2xy2 − y3

3
+ g(x).

These two results together give the solution

V = 2xy2 + x2y − 2x3

3
− y3

3
(5.1)

b)

~∇ · ~E =
∂Ex
∂x

+
∂Ey
∂y

+
∂Ez

∂z
= 4x− 2y − 4x− 2y = 0 (5.2)

6. Griffiths 2.47, 4th ed.

Find the net force that the southern hemisphere of a uniformly
charged solid sphere exerts on the northern hemsiplere. Ex-
press your answer in terms of the radius R and the total charge
Q. [Answer: (1/4πε0)(3Q

2/16R2)].

SOLUTION: Use Gauss’ law to find the electric field inside
the sphere. Set the Gaussian spherical surface concentric with
the charged sphere. We find

E(4πr2) =
1

ε0

∫ r

0
ρr′

2
dr′
∫ π

0
sin θdθ

∫ 2π

0
dφ

E =
ρ

4πr2ε0

4

3
πr3r̂ =

ρ

3ε0
rr̂

The force on the charge in the upper half of the sphere (polar
angle 0 < θ < π/2, is all in the vertical direction. The vertical
component of the field is

Ey = E(r) · ẑ = E(r) cos θ

The force is the product of the vertical component of the
field and the charge. The force on an infinitesimal volume of
charge at r, θ is

dF = E(r) cos θρr2dr sin θdθdφ

where ρr2drsinθdθdφ = dq. Then the total force is∫
dF =

∫ R

0

∫ π/2

0

∫ 2π

0
E(r) cos θρdτ

=

∫ R

0

∫ π/2

0

∫ 2π

0
E(r) cos θρr2dr sin θdθdφ

F =

∫ R

0

∫ π/2

0

∫ 2π

0

ρr

3ε0
cos θρr2dr sin θdθdφ
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=
ρ2R4

4 · 3ε0
1

2
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=
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