
Physics 3323, Fall 2016 Problem Set 3 due Sep 16, 2016

Reading: Griffiths 2.5 through 3.1

1. Potential of uniformly charged sphere

Find the potential inside and outside a uniformly charged solid
sphere whose radius is R and whose total charge is q. Use
infinity as your reference pont. Compute the gradent of V in
each region, and check that it yields the correct field. Sketch
V (r).

SOLUTION: First, we quickly use Gauss’s law in integral
form and the spherical symmetry to calculate the electric field
both inside and outside the sphere. We know that ~E is in the
r̂ direction.
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Now we can integrate from a point at infinity to a point at
radius r to get the potential.
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Now we can take the gradient to see if these formulas yield the
correct electric field. With spherical symmetry, the gradient
takes the form
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2. Electrostatic energy of a nucleus

Suppose you model the nucleus as a uniformly charged sphere
with a total charge Q = Ze and radius R = 1.2×10−15A1/3 m.
a) Show that the electrostatic energy of such a sphere is given

3Q2/(20πε0R).
b) Using (a), compute the electrostatic energy of an atomic

nucleus, expressing your result in MeV×Z2/A1/3.
c) Calculate the change in electrostatic energy when a ura-

nium nucleus (Z = 92, A = 238) fissions into two equal frag-
ments.

SOLUTION:

a) We can use the electric fields calculated in problem 2 to
calculate the integral for electrostatic energy.
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b)
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3. Screened Coulomb potential

Consider the screened Coulomb potential of a point charge q,
which can arise in plasma physics or in analyzing conduction
electrons in semiconductors. The potential is given by:
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where λ is the “screening length”, a constant. Such a po-
tential arises because a charged particle will attract oppo-
sitely charged particles, or equivalently, repel like-sign charges,
which surround the original particle. Such a cloud will mask,
or screen, the charge of the original particle, giving rise to a
field that dies much more rapidly than the bare Coulomb in-
teraction.
a) Determine the electric field ~E(~r) associated with this po-

tential.
b) Find the charge distribution ρ(~r) associated with this elec-

tric field. Careful about the origin (hint: how can you write
ρ(~r) for a point charge?) Make a sketch of your result that
captures the dominant features.
c) Show that the total charge involved is zero by both inte-

grating ρ(~r) over all space, and by using the integral form of
Gauss’ law on the electric field.

SOLUTION:
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b) Here we can use Gauss’s law in differential form.
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This result should make us question our method, since it
implies a charge density that is everywhere the opposite sign
of q. But we know that there is a point with charge density
with the same sign as q, namely the charge itself. The reason
our method of taking a derivative fails is because the function
is not defined at r = 0. We can write the density of the charge
at the origin with a delta function

ρ = qδ3(~r)− qe−r/λ

4πrλ2
. (3.3)

c) First by integrating the charge density over all of space.
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Now by applying Gauss’s law in integral form where r is the
radius of a spherical Gaussian surface.

Q = lim
r→∞

ε0

∮
~E · d ~A

= lim
r→∞

ε0
q

4πε0r2

[
1 +

r

λ

]
e−r/λ4πr2

3



= lim
r→∞

q
[
1 +

r

λ

]
e−r/λ = 0

4. Coaxial conductors

Calculate the energy per unit length for two very long coaxial
cylindrical shells, neglecting edge effects. The inner and outer
cylinders have radii a and b and uniform linear charge densities
λ and −λ, respectively. The charge is uniformly distributed
around the cylinder surfaces.

SOLUTION:
Here the cylindrical symmetry allows us to use cylindrical
Gaussian surfaces to calculate the electric field in each of the
regions s < a, a < s < b, and s > b. For both s < a and
s > b, there is no net charge enclosed in the Gaussian surface,
so ~E = ~0 there. For a < s < b, we have
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Now we can integrate the energy per unit length.
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5. A spherical capacitor

A capacitor consists of two concentric spherical shells. The
inner shell, conductor 1, has radius a, and the outer shell,
conductor 2, has radius b. For this two-conductor system, find
C11, C12 and C22.

SOLUTION: Case 1: set V2 = 0 on the outer conductor
while applying a voltage V1 to the inner conducting sphere.
Suppose we have charge q2 on the outer conductor, and charge
q1 on the inner conductor. For the space between the two
conductors, Gauss’ law tells us that
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The charge q2 must cancel the potential contribution from
q1. Since for spherical geometries the electric field and po-
tential both act like charges at the center of the sphere, we
see we must have q2 = −q1 and therefore C21 = −C11.

Case 2: set V1 = 0 on the inner conductor while applying
a voltage V2 to the outer conducting sphere. From the same
argument we started with above, we now have
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and we see that C12 = C21 as expected. For the outer sphere,
we now have

V2 = k
q1 + q2
b

.

Solving for q2

q2 = − b
a
q1.
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