Physics 3323, Fall 2016

Problem Set 3

due Sep 16, 2016

Reading: Griffiths 2.5 through 3.1

1. **Potential of uniformly charged sphere**

Find the potential inside and outside a uniformly charged solid sphere whose radius is \(R \) and whose total charge is \(q \). Use infinity as your reference point. Compute the gradient of \(V \) in each region, and check that it yields the correct field. Sketch \(V(r) \).

SOLUTION: First, we quickly use Gauss’s law in integral form and the spherical symmetry to calculate the electric field both inside and outside the sphere. We know that \(\vec{E} \) is in the \(\hat{r} \) direction.

\[
4\pi r^2 E_{\text{out}} = \frac{q}{\varepsilon_0} \Rightarrow \vec{E}_{\text{out}} = \frac{1}{4\pi \varepsilon_0} \frac{q}{r^2} \hat{r}
\]

\[
4\pi r^2 E_{\text{in}} = \frac{q}{\varepsilon_0} \left(\frac{r}{R} \right)^3 \Rightarrow \vec{E}_{\text{in}} = \frac{1}{4\pi \varepsilon_0} \frac{qr}{R^3} \hat{r}
\]

Now we can integrate from a point at infinity to a point at radius \(r \) to get the potential.

\[
V_{\text{out}} = -\int_{\infty}^{r} E_{\text{out}} \, dr
\]

\[
= -\frac{1}{4\pi \varepsilon_0} q \int_{\infty}^{r} \frac{dr}{r^2}
\]

\[
V_{\text{out}} = -\frac{1}{4\pi \varepsilon_0} \left(\frac{q}{r} \right)_{\infty} = \frac{1}{4\pi \varepsilon_0} \frac{q}{r} \quad (1.1)
\]

\[
V_{\text{in}} = -\int_{\infty}^{R} E_{\text{out}} \, dr - \int_{R}^{r} E_{\text{in}} \, dr
\]

\[
= \frac{1}{4\pi \varepsilon_0} \left[\frac{q}{R} - \left(\int_{R}^{r} \frac{qr}{R^3} \, dr \right) \right]
\]

\[
= \frac{1}{4\pi \varepsilon_0} \left[\frac{q}{R} - \left(\frac{qr^2}{2R^3} \right)_{R} \right]
\]

\[
= \frac{1}{4\pi \varepsilon_0} \left[\frac{q}{R} - \frac{qr^2}{2R^3} + \frac{q}{2R} \right]
\]

\[
V_{\text{in}} = \frac{1}{4\pi \varepsilon_0} \frac{q}{R} \left[3 - \frac{1}{2} \left(\frac{r}{R} \right)^2 \right] \quad (1.2)
\]

Now we can take the gradient to see if these formulas yield the correct electric field. With spherical symmetry, the gradient takes the form

\[
\nabla V(r) = \frac{\partial V}{\partial r} \hat{r}
\]

\[
-\nabla V_{\text{out}} = -\frac{1}{4\pi \varepsilon_0} \hat{r} \frac{\partial}{\partial r} \left[\frac{q}{r} \right]
\]
2. Electrostatic energy of a nucleus

Suppose you model the nucleus as a uniformly charged sphere with a total charge \(Q = Ze \) and radius \(R = 1.2 \times 10^{-15} A^{1/3} \) m.

a) Show that the electrostatic energy of such a sphere is given by \(\frac{3Q^2}{20 \pi \varepsilon_0 R} \).

b) Using (a), compute the electrostatic energy of an atomic nucleus, expressing your result in MeV \(\times \frac{Z^2}{A^{1/3}} \).

c) Calculate the change in electrostatic energy when a uranium nucleus (\(Z = 92, A = 238 \)) fissions into two equal fragments.

SOLUTION:

We can use the electric fields calculated in problem 2 to calculate the integral for electrostatic energy.

\[
W = \frac{\varepsilon_0}{2} \int E^2 dV
= \frac{\varepsilon_0}{2} \int_0^R E_{\text{in}}^2 4\pi r^2 dr + \frac{\varepsilon_0}{2} \int_{R}^{\infty} E_{\text{out}}^2 4\pi r^2 dr
= \frac{4\pi Q^2}{32\pi^2 \varepsilon_0} \left[\int_0^R \frac{r^4}{R^6} dr + \int_{R}^{\infty} \frac{1}{r^2} dr \right]
\]

b) \[
W = \frac{3(Ze)^2}{20 \pi \varepsilon_0 (1.2 \times 10^{-15} \text{ m}) A^{1/3}}
= \frac{3(1.602 \times 10^{-19} \text{ C})^2}{20 \pi \cdot 8.854 \times 10^{-12} \text{ F/m} \cdot 1.2 \times 10^{-15} \text{ m}} \times \frac{1 \text{ eV}}{1.602 \times 10^{-19} \text{ J} \cdot A^{1/3}} \times \frac{Z^2}{A^{1/3}}
\]

\[
W = 0.72 \text{ MeV} \times \frac{Z^2}{A^{1/3}}
\]

(2.2)

c) \[
W_{\text{U}_{238}^{92} \rightarrow 2\text{Pd}_{119}^{46}}
\]
\[
\Delta W = 0.72 \text{ MeV} \times \left(\frac{92^2}{238^{1/3}} - 2 \frac{46^2}{119^{1/3}} \right)
\]
\[
\Delta W = 364 \text{ MeV}
\]

(2.3)

3. Screened Coulomb potential

Consider the screened Coulomb potential of a point charge \(q \), which can arise in plasma physics or in analyzing conduction electrons in semiconductors. The potential is given by:

\[
V(\vec{r}) = \frac{q}{4\pi \varepsilon_0} \frac{e^{-r/\lambda}}{r},
\]

(3.1)
where λ is the “screening length”, a constant. Such a potential arises because a charged particle will attract oppositely charged particles, or equivalently, repel like-sign charges, which surround the original particle. Such a cloud will mask, or screen, the charge of the original particle, giving rise to a field that dies much more rapidly than the bare Coulomb interaction.

a) Determine the electric field $\vec{E}(\vec{r})$ associated with this potential.

b) Find the charge distribution $\rho(\vec{r})$ associated with this electric field. Careful about the origin (hint: how can you write $\rho(\vec{r})$ for a point charge?) Make a sketch of your result that captures the dominant features.

c) Show that the total charge involved is zero by both integrating $\rho(\vec{r})$ over all space, and by using the integral form of Gauss’ law on the electric field.

SOLUTION:

a)

$$
\vec{E} = -\nabla V \\
= -\frac{q}{4\pi\varepsilon_0} \hat{r} \frac{\partial}{\partial r} \left[\frac{e^{-r/\lambda}}{r} \right] \\
= -\frac{q}{4\pi\varepsilon_0} \hat{r} \left[-\frac{r}{\lambda} e^{-r/\lambda} \right] \\
\vec{E} = \frac{q}{4\pi\varepsilon_0 r^2} \left[1 + \frac{r}{\lambda} \right] e^{-r/\lambda} \hat{r}
$$

(3.2)

b) Here we can use Gauss’s law in differential form.

$$
\rho = \varepsilon_0 \nabla \cdot \vec{E}
$$

$$
= \varepsilon_0 \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{q}{4\pi\varepsilon_0 r^2} \left[1 + \frac{r}{\lambda} \right] e^{-r/\lambda} \\
= \frac{q}{4\pi r^2} \frac{\partial}{\partial r} \left[\left(1 + \frac{r}{\lambda} \right) e^{-r/\lambda} \right] \\
\rho = \frac{qe^{-r/\lambda}}{4\pi r^2}
$$

This result should make us question our method, since it implies a charge density that is everywhere the opposite sign of q. But we know that there is a point with charge density with the same sign as q, namely the charge itself. The reason our method of taking a derivative fails is because the function is not defined at $r = 0$. We can write the density of the charge at the origin with a delta function

$$
\rho = q\delta^3(\vec{r}) - \frac{qe^{-r/\lambda}}{4\pi r^2}.
$$

(3.3)

c) First by integrating the charge density over all of space.

$$
Q = \int \rho \, dV = \int dV \left[q\delta^3(\vec{r}) - \frac{qe^{-r/\lambda}}{4\pi r^2} \right] \\
= q \left[1 - \int_0^\infty \frac{e^{-r/\lambda}}{4\pi r^2} 4\pi r^2 \, dr \right] \\
= q \left[1 - \int_0^\infty xe^{-x} \, dx \right] = 0
$$

Now by applying Gauss’s law in integral form where r is the radius of a spherical Gaussian surface.

$$
Q = \lim_{r \to \infty} \varepsilon_0 \int \vec{E} \cdot d\vec{A} \\
= \lim_{r \to \infty} \varepsilon_0 \frac{q}{4\pi\varepsilon_0 r^2} \left[1 + \frac{r}{\lambda} \right] e^{-r/4\pi r^2}
$$
4. Coaxial conductors

Calculate the energy per unit length for two very long coaxial cylindrical shells, neglecting edge effects. The inner and outer cylinders have radii \(a \) and \(b \) and uniform linear charge densities \(\lambda \) and \(-\lambda \), respectively. The charge is uniformly distributed around the cylinder surfaces.

SOLUTION:

Here the cylindrical symmetry allows us to use cylindrical Gaussian surfaces to calculate the electric field in each of the regions \(s < a \), \(a < s < b \), and \(s > b \). For both \(s < a \) and \(s > b \), there is no net charge enclosed in the Gaussian surface, so \(\vec{E} = 0 \) there. For \(a < s < b \), we have

\[
2\pi s l E = \frac{\lambda l}{\varepsilon_0} \Rightarrow \vec{E} = \frac{\lambda}{2\pi \varepsilon_0 s} \hat{s}
\]

Now we can integrate the energy per unit length.

\[
\frac{W}{l} = \frac{\varepsilon_0}{2l} \int E^2 dV
\]

\[
= \frac{\varepsilon_0}{2l} \int_{a}^{b} \frac{\lambda^2}{4\pi \varepsilon_0 s^2} \cdot 2\pi l s \, ds
\]

\[
= \frac{\lambda^2}{4\pi \varepsilon_0} \int_{a}^{b} \frac{ds}{s} = \frac{\lambda^2}{4\pi \varepsilon_0} \ln \left(\frac{b}{a} \right)
\]

\[
\frac{W}{l} = \frac{\lambda^2}{4\pi \varepsilon_0} \ln \left(\frac{b}{a} \right) \tag{4.1}
\]

5. A spherical capacitor

A capacitor consists of two concentric spherical shells. The inner shell, conductor 1, has radius \(a \), and the outer shell, conductor 2, has radius \(b \). For this two-conductor system, find \(C_{11}, C_{12} \) and \(C_{22} \).

SOLUTION: Case 1: set \(V_2 = 0 \) on the outer conductor while applying a voltage \(V_1 \) to the inner conducting sphere. Suppose we have charge \(q_2 \) on the outer conductor, and charge \(q_1 \) on the inner conductor. For the space between the two conductors, Gauss’ law tells us that

\[
\vec{E} = k \frac{q_1}{r^2} \hat{r},
\]

so

\[
V_2 - V_1 = -\int_{a}^{b} \vec{E} \cdot d\vec{l} = k q_1 \left(\frac{1}{b} - \frac{1}{a} \right).
\]

But here, \(V_2 - V_1 = -V_1 \), so

\[
q_1 = 4\pi \varepsilon_0 \frac{ab}{b-a} V_1
\]

and hence

\[
C_{11} = 4\pi \varepsilon_0 \frac{ab}{b-a}.
\]

The charge \(q_2 \) must cancel the potential contribution from \(q_1 \). Since for spherical geometries the electric field and potential both act like charges at the center of the sphere, we see we must have \(q_2 = -q_1 \) and therefore \(C_{21} = -C_{11} \).

Case 2: set \(V_1 = 0 \) on the inner conductor while applying a voltage \(V_2 \) to the outer conducting sphere. From the same argument we started with above, we now have

\[
V_2 - V_1 = V_2 = -\int_{a}^{b} \vec{E} \cdot d\vec{l} = k q_1 \left(\frac{1}{b} - \frac{1}{a} \right),
\]
and we see that $C_{12} = C_{21}$ as expected. For the outer sphere, we now have

$$V_2 = k \frac{q_1 + q_2}{b}.$$

Solving for q_2

$$q_2 = -\frac{b}{a} q_1.$$