
Physics 3323, Fall 2016 Problem Set 5 due September 30, 2016

Reading: Griffiths 4.1 through 4.4.3

1. Capacitance

In class, we investigated the potential for a conducting sphere
whose top half is held at V0 and whose bottom half (electrically
isolated from the top) is held at −V0. We found

V (r < R, θ) = V0
∑
` odd

(2`+ 1)α`

( r
R

)`
P`(cos θ)

V (r > R, θ) = V0
∑
` odd

(2`+ 1)α`

(
R

r

)`+1

P`(cos θ)

where

αl =

∫ 1

0

P`(x) dx =
1

`(`+ 1)

dP`(x)

dx

∣∣∣∣
x=0

.

Find the capacitance of this device.

SOLUTION: The capacitance C = Q/V . The charge density
is given by (

∂Vout
∂r

− ∂Vin
∂r

)
r=R

= − σ
ε0

Using the equations above we write

−σ(θ)

ε0
= V0

∑
l odd

(2l + 1)αlPl(cos θ)

(
−(l + 1)

Rl+1

rl+2
− l r

l−1

Rl

)
r=R

= V0
∑
l odd

(2l + 1)αlPl(cos θ)

(
−(l + 1)

Rl+1

Rl+2
− lR

l−1

Rl

)
= V0

∑
l odd

(2l + 1)αlPl(cos θ)

(
−(2l + 1)

R

)

The total charge on the upper half sphere is

2πR2

∫ π/2

0
σ(θ) sin θdθ = ε0V0

2πR2

R

×
∑
l odd

(2l + 1)2αl

∫ π/2

0
Pl(cos θ) sin θdθ

= ε0V0
2πR2

R
×
∑
l odd

(2l + 1)2αl

∫ 1

0
Pl(x)dx

Q = ε0V0(2πR)×
∑
l odd

(2l + 1)2α2
l

Then

C =
Q

∆V
=

Q

2V0
= ε0(πR)×

∑
l odd

(2l + 1)2α2
l

2. A derivative boundary condition

You have a potential, invariant in z, for which you know the
boundary conditions as shown in the rectangle in the figure
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below. (From Heald and Marion)
a) Find the potential for all points inside the rectangle.

b) Sketch a few field-lines and equipotentials.

y

xx=a

y=b

V=0

V=0

V=V0
∂ V/∂ x = 0

SOLUTION:

a)The general solution is

V (x, y) = X(x)Y (y) = (Aekx +Be−kx)(C cos ky +D sin ky)

The boundary conditions at y = 0 and y = b are satisfied if
k = nπ

b and C = 0. The boundary condition at x = 0 ∂V
∂x = 0

implies that(
kAekx − kBe−kx

)
x=0

= 0→ A = B.

Therefore

V (x, y) =
∞∑
n=1

An cosh(
nπ

b
x) sin

nπ

b
y

The boundary condition at x = a requires that

V0 =
∞∑
n=1

An cosh(
nπ

b
a) sin

nπ

b
y

∫ b

0
V0 sin(

n′π

b
y)dy =

∞∑
n=1

An cosh
nπ

b
a

∫ b

0
sin(

n′π

b
y) sin(

nπ

b
y)dy

2V0
b

n′π
=

∞∑
n=1

An cosh(
nπ

b
a)
b

2
δnn′

→ An =
4V0

nπ cosh(nπab )

V =
∞∑
n=1

4V0 cosh(nπxb )

nπ cosh(nπab )
sin(

nπ

b
y)

b)See Figure 1.

3. Charged Conducting Sphere

Suppose you have a uniform electric field ~E = E0ẑ into which
you will place a spherical conductor of radius R, as in Griffiths
Example 3.8. The conducting sphere in this problem carries a
total charge Q.
a) Find the potential in the region outside the sphere.

b) Determine the charge density on the sphere, and interpret

what you find.

SOLUTION: The potential inside the sphere is the same
as the potential on the sphere since it is a conductor. The
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Figure 1: a = 1,b = 2,V0 = π/4, sum includes all odd n from 1,19

general solution for the potential outside the sphere is

Vout =
∞∑
l=0

(Alr
l +

Bl
rl+1

)Pl(cos θ)

The potential of the sphere is a constant, V0.

V0 =

∞∑
l=0

(AlR
l +

Bl
Rl+1

)Pl(cos θ)

∫ π

0
V0Pl′(cos θ) sin θdθ =

∞∑
l=0

(AlR
l +

Bl
Rl+1

)

∫ π

0
Pl(cos θ)Pl′(cos θ)dθ

The integral on the left is 0, unless l′ = 0. Therefore each
term in the sum is 0 except l′ = 0 and when l′ = 0 we get

2V0 =
∞∑
l=1

(AlR
l +

Bl
Rl+1

)
2δl0

2l + 1

V0 = (A0 +
B0

R
)

Meanwhile for all the other terms we have

AlR
l +

Bl
Rl+1

= 0→ Bl = −AlR2l+1

At r → ∞, V → −E0z = −E0r cos θ so that E = −∇V =
E0ẑ. Therefore A1P1(cos θ) = −E0 cos θ → A1 = −E0 and
Al>1 = 0, B1 = R3E0 and A0 = 0 and B0 = RV0. Finally

V = (A1r +
B1

r2
) cos θ +

B0

r
= −E0(r −

R3

r2
) cos θ + V0

R

r

The surface charge density on the sphere is

σ(θ)

ε0
= −∂Vout

∂r
= E0(1 + 2

R3

R3
) cos θ + V0

R

R2

The total charge

Q = 2πR2ε0

∫ π

0
(3E0 cos θ + V0

R

R2
) sin θdθ = 4πε0RV0

and

V0 =
Q

4πε0R

4. A spherical insulator

A very thin insulating spherical shell of radius R0 has an ax-
ially symmetric surface charge density σ(θ) = σ0(3 cos2 θ − 1)
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distributed over its surface. The polar angle θ is measured
with respect to the z axis and σ0 is a constant.
a) Sketch the charge distribution as a function of θ.

b) Find the potential both inside and outside the shell.

SOLUTION:

a)

-1

-0.5

 0

 0.5

 1

 1.5

 2

//4 //2 3//4 / 0
e

3cos2e-1

b)The potentials inside and outside the sphere are

Vin =
∞∑
l=0

Alr
lPl(cos θ)

Vout =
∞∑
l=0

Bl
rl+1

Pl(cos θ)

The potential is continuous at the boundary. Therefore

Vin(R) = Vout(R)→ AlR
l =

Bl
Rl+1

The charge density

σ = −ε0
(
∂Vout
∂r

− ∂Vin
∂r

)
r=R

2σ0P2(cos θ) = −ε0
∞∑
l=0

Pl(cos θ)

(
−(l + 1)

Bl
Rl+2

− lAlRl−1
)

where we note that σ = σ0
2 P2(cos θ). Then substituting Bl =

AlR
2l+1 we get

2σ0P2(cos θ) = −ε0
∞∑
l=0

Pl(cos θ)

(
−(l + 1)

AlR
2l+1

Rl+2
− lAlRl−1

)

= −ε0
∞∑
l=0

Pl(cos θ)
(
−(2l + 1)AlR

l−1
)

It is clear that only A2 is nonzero. Then

A2 =
2σ0

5ε0R

and

Vin =
2σ0

5ε0R
r2P2(cos θ)
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Vout =
Bl
r2
P2 =

2σ0
5ε0R

R5

r3
P2(cos θ) =

2σ0R
4

5ε0r3
P2(cos θ)

5. Axial expansion and a ring of charge

Starting from our results for separation of variables in spher-
ical coordinates for an axially symmetric distribution, we can
obtain the axial expansion, a method of determining the po-
tential everywhere for symmetric charge distribution when we
know the potential on the axis of symmetry. Consider our
general result

V (r, θ) =
∞∑
n=0

(
Anr

n +Bn/r
n+1
)
Pn(cos θ), (5.1)

where the z axis is the symmetry axis. On the symmetry axis,
for which θ = 0, Pn(1) = 1 for all n. Suppose that the potential
on the axis is known, and can be expressed as a power series
in z:

Vaxis(z) =
∞∑
n=0

(
anz

n + bn/z
n+1
)
. (5.2)

This is exactly the same form as our general result evaluated
on the z axis, so the coefficients in the two series must be
equal. If we know the expansion on the z axis, it immediately
tells us the full expansion!
a) Using problem 1 in Problem Set 01 as your starting point,

find the potential of a thin, uniformly charged, circular ring of
radius a and total charge q at all points for which r > a, where
r is the distance from the center of the ring. In particular,
evaluate the first three terms of the expansion.
b) Sketch your result.

c) Comparing your result to the multipole expansion in terms

of Legendre polynomials in Griffiths, identify the multipoles
to which each of your three terms belong.

SOLUTION:

a)The potential of a thin uniformly charged circular ring of
radius a and total charge q on the z-axis is

V (r) =
q

4πε0

1√
r2 + a2

=
q

4πε0

1

r
√

1 + a2/r2

=
q

4πε0

1

r

(
1− 1

2

a2

r2
+

3

8

(
a2

r2

)2

− 5

16

(
a2

r2

)3

+ . . .

)
→

V (r, θ) =
q

4πε0r

(
1− 1

2

a2

r2
P2(cos θ) +

3

8

a4

r4
P4(cos θ) +

5

16

a6

r6
P6(cos θ) + . . .

)

b)See Figure 2.

6. Leading behavior of various line charges

Griffiths 3.46 (3.40 in 3rd ed.)

SOLUTION:

a)λ = k cos(πz2a ). The monopole term is∫ a

−a
k cos(

πz

2a
)dz =

2ak

π
sin(

πz

2a
)|a−a =

4ak

π

.
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Figure 2: First 3 terms in the expansion

b)λ = k sin(πz/a). The monopole term is
∫ a
−a k sin(πza )dz =

0. The dipole term is∫ a

−a
k sin(

πz

a
)zdz =

k

π2
(
a2 sin(πz/a)− πaz cos(πz/a)

)a
−a

= 2ka2/π

c)λ = k cos(πza ). The monopole term is
∫ a
−a k cos(πza )dz = 0.

The dipole term is ∫ a

−a
k cos(

πz

a
)zdz = 0

. The quadrupole term∫ a

−a
k cos(

πz

a
)z2dz = k

4a3

π2

.
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