
Physics 3323, Fall 2016 Problem Set 7 due Oct 14, 2016

Reading: Griffiths 4.1 through 4.4.1

1. Electric dipole

An electric dipole with ~p = −p0ẑ is located at the origin and
is sitting in an otherwise uniform electric field ~E = E0ẑ. Find
the spherical surface, centered at the origin, through which no
electric field lines pass, that is for which ~E · n̂ = 0. What is
its radius?

SOLUTION: The electric field of a dipole is given by Griffiths
in equation 3.103. We will use this form except in our case,
the dipole is ~p = −p0ẑ so that we get

~Edip = − p0
4πε0r3

(
2 cos θr̂ + sin θθ̂

)
. (1.1)

For the uniform field, we just need to replace ẑ with ẑ =
cos θr̂− sin θθ̂. The total field becomes

~E =

(
E0 −

2p0
4πε0r3

)
cos θr̂−

(
E0 +

p0
4πε0r3

)
sin θθ̂. (1.2)

We want to find the spherical surface where ~E · n̂ = 0.

~E · n̂ = Ẽ · r̂ =

(
E0 −

2p0

4πε0r3

)
cos θ = 0 (1.3)

r =

(
p0

2πε0E0

)1/3

(1.4)

Figure 1: Diagram of dipole and ion for problem 2.

2. Attractive ions

Between any ion and a neutral atom, there is a force that arises
in the following manner. The electric field of the ion polarizes
the atom, and the field of that induced dipole reacts on the
ion.
a) Show that this force is always attractive, and that it varies

with the inverse fifth power of the distance of separation r.
b) Derive an expression for the associated potential energy,

with zero energy corresponding to infinite separation. c) For

what distance r is this potential energy of the same magnitude
as kT at room temperature if the ion is singly charged (q = e)
and the atom is a sodium atom?

SOLUTION:
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a) Let us place the polarized atom at the origin, and arrange
our coordinate axes so that the ion is on the z-axis a distance
r away. We want to know the force the polarized atom exerts
on the ion, so first we need to know how polarized the atom
is. This will depend on the electric field at the origin from
the ion, so we start by calculating the ion’s electric field at
the origin.

~Eion(0) = − 1

4πε0

q

r2
ẑ (2.1)

Now the induced dipole moment of the atom is given by ~p =
α~E. Now we can calculate the polarization of the atom.

~patom = α~Eion = − 1

4πε0

αq

r2
ẑ (2.2)

We have the dipole moment of the atom, and our system
is set up in such a way that it points in the (negative) z
direction. We can use equation 3.103 from Griffiths with
p = −αq/4πε0r2 and θ = 0 to write down the electric field
from the dipole at the position of the ion.

~Edip(rẑ) =
p

4πε0r3

(
2 cos θr̂ + sin θθ̂

)
=

2p

4πε0r3
ẑ (2.3)

~Edip(rẑ) = − 2αq

(4πε0)2r5
ẑ (2.4)

The force on the ion is then given by ~F = q ~E.

~F = − 2αq2

(4πε0)2r5
ẑ (2.5)

We see that the force on the ion is directed towards the atom,
i.e. it is attractive, and that it varies with the inverse fifth
power of r.

b) We can get the solution for the potential energy by inte-
grating the force along a path starting at infinity.

U = −
∫ r

∞
Fr dr =

∫ r

∞

2αq2

(4πε0)2r5
dr (2.6)

U = − αq2

2(4πε0)2r4
(2.7)

3. Get a charge out of polarization

Griffiths 4.10

SOLUTION:

a)

σb = ~P · n̂ = P̃ · r̂
∣∣∣
r=R

= krr̂ · r̂|r=R (3.1)

ρb = −∇· ~P = − 1

r2
∂

∂r
[r2Pr] = − 1

r2
∂

∂r
[kr3] = − k

r2
3r2 (3.2)

σb = kR
ρb = −3k

(3.3)

b)We have spherical symmetry, so we can use Gauss’s Law in
integral form. Since there is no free charge, the total charge
is just the bound charge. Because of the sperical symmetry,
~E = Er̂.
Inside the Sphere:

4πr2Ein =
4

3
πr3

ρb
ε0
⇒ Ein =

4πr3/3

4πε0r2
(−3k) = −kr

ε0
(3.4)

Outside the Sphere:

4πr2Eout =
4

3
πR3 ρb

ε0
+4πR2σb

ε0
= −4πR3

ε0
+

4πR3

ε0
= 0 (3.5)
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~Ein = −kr
ε0

~Eout = 0
(3.6)

4. Permanently polarized dielectric shell

Griffiths 4.15

SOLUTION:

a) There are two surfaces which for which we need to calcu-
late the bound surface charge. We also need to calculate the
bound charge density in between the two.
Inner Surface:

σb,a = ~P · n̂ = −P̃ · r̂ = −k

a
(4.1)

Outer Surface:

σb,b = ~P · r̂ =
k

b
(4.2)

In between:

ρb = −∇ · ~P = − 1

r2
∂

∂r

[
r2
k

r

]
= − k

r2
(4.3)

We have spherical symmetry so ~E = Er̂. We can use Gauss’s
law in integral form to calculate E.
For r < a:

4πr2E = 0 ⇒ ~E = 0 (4.4)

For a < r < b:

4πr2E =
4πa2(−k/a)

ε0
+

1

ε0

∫ r

a

(
− k

r2

)
4πr2 dr (4.5)

E =
1

r2

[
−ka
ε0
− k(r − a)

ε0

]
= − k

rε0
(4.6)

For r > b:

4πr2E =
4πa2(−k/a)

ε0
+

1

ε0

∫ b

a

(
− k

r2

)
4πr2 dr +

4πb2(k/b)

ε0
(4.7)

E =
1

r2

[
−ka
ε0
− k(b− a)

ε0
= − k

rε0
+
kb

ε0

]
= 0 (4.8)

All together we have the following solution:

σb,a = −k/a
σb,b = k/b

~E =

{
− k
rε0

r̂ for a < r < b

0 otherwise

(4.9)

b) Since there is no free charge but we still have spherical
symmetry, we find from Gauss’s law that ~D = 0 everywhere.

~D = ε0 ~E + ~P = 0 ⇒ ~E = − 1

ε0
~P (4.10)

~E =

{
− k
rε0

r̂ for a < r < b

0 otherwise
(4.11)

5. Hemispherical capacitor

A hemispherical conducting shell (radius b) is filled with a soft
plastic, characterized by a very large relative dielectric con-
stant εr and a very small electrical conductivity σ. A needle-
shaped conductor with a hemispherical tip (radius a) is pressed
into the plastic, as shown in the figure, so that it is concentric
with the shell. When the circuit switch is closed, a very small
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a
b

Figure 2: Capacitor for problem 5.

current I flows and charges +Q and −Q appear on the con-
ductors.
a) What is the capacitance of this arrangement?

b) Find the magnitude
∣∣∣ ~E∣∣∣ of the electric field in the volume

between the two conductors as a function of the distance r
from the center of the conductors.
c) FInd the surface density of bound charge on the inner

(r = a) and the outer (r = b surfaces of the dielectric.
d) What is the surface density of bound charge on the flat

surface of the dielectric? Explain.

SOLUTION:

a) Since a full spherical capacitor is just two hemispherical
capacitors in parallel, a hemispherical capacitor has half the
capacitance of a spherical capacitor. We can calculate the

capacitance of two concentric spheres filled with a dielectric.

~D =
Q

4πr2
r̂ ⇒ ~E =

Q

4πεrε0r2
r̂ (5.1)

∆V =

∫ b

a
Erdr =

Q

4πεrε0

∫ b

a

dr

r2
=

Q

4πεrε0

(
1

a
− 1

b

)
(5.2)

C =
Q

∆V
= 4πεrε0

ab

b− a
(5.3)

For the hemisphere:

C = 2πεrε0
ab

b− a
(5.4)

Because the dielectric has a large dielectric constant, we can
ignore the edge effects due to the hemisphere ending and
breaking spherical symmetry.

b) The electric field was found in part a) in Eq. (??).

E =
Q

4πεrε0r2
(5.5)

c)
σb = ~P · n̂ = (D̃− ε0Ẽ) · n̂ (5.6)

σb,a = −~P · r̂ = − Q

4πa2

(
1− 1

εr

)
(5.7)

σb,b = ~P · r̂ =
Q

4πb2

(
1− 1

εr

)
(5.8)

d) There will be no surface bound charge on the flat part of
the dielectric since ~E, ~D, and ~P all point radially.

4



6. Cylindrical capacitor in dielectric oil

Griffiths 4.28

SOLUTION: Griffiths 4.64 on page 195 gives a general ex-
pression for the force exerted on a moveable dielectric.

F =
1

2
V 2dC

dx
(6.1)

We can calculate the force per unit area of the oil in the
capacitor, and equate it to the pressure in a fluid at depth
x = h to find h.

P = ρgh (6.2)

First though, we need to find the capacitance of the capacitor
so we can take its derivative. Suppose that before the oil rises
there is a (long) length Loil under the oil and a (similarly
long) length Lair above the oil. What is the capacitance of
the cylindrical capacitor? We can find the electric field inside
the capacitor as a function of Q, the charge on the inner
cylinder, using Gaus’s law and then integrate it to get the
potential difference between the two cylinders.

2πrLE =
Q

ε0
⇒ ~E =

Q/L

2πsε0
ŝ (6.3)

∆V = −
∫ a

b

Q/L

2πsε0
ŝ · dsŝ =

Q/L

2πε0
ln

(
b

a

)
(6.4)

Thus we find that the capacitance of the part of the capacitor
that is in air.

Cair =
Qair
∆V

=
2πε0
ln b/a

(Lair − x) (6.5)

Here Qair = Q (Lair − x) /L. The part of the capacitor in the
oil with suceptibility χe has a different capacitance.

C

L
= (1 + χe)

2πε0
ln b/a

(Loil + x) (6.6)

Now we can calculate dC
dx .

dC

dx
=

2πε0
ln b/a

(−1 + 1 + χe) =
2πε0χe
ln b/a

(6.7)

F =
1

2
V 2dC

dx
=
πε0χeV

2

ln b/a
(6.8)

Now we equate the pressure to the force per unit area.
A = π(b2 − a2).

P = ρgh =
F

A
=

πε0χeV
2

π(b2 − a2) ln b/a
(6.9)

h =
ε0χeV

2

ρg(b2 − a2) ln b/a
(6.10)

7. Current Loop

A circular current loop with radius a lies in the xy plane,
carries a current I, and is centered at the origin. Application of
the Biot-Savart law in Griffiths Example 5.6 gives the magnetic
field of the current loop along the z-axis in the form Bz(z)ẑ.
a) Evaluate

∫ +∞
−∞ Bz dz.

b) Now use Ampère’s law in the form
∮
~B · ~̀ for the closed

path that extends along the z axis from z = −∞ to z = +∞,
and then returns along a semicircular arc “at” r = +∞. What
are the ingredients that go into the integral

∫
arc

~B ·~̀ in the limit
that r � a. Find the limiting value of the integral over the
arc.

SOLUTION:
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a) The magnetic field along the axis is given in Griffiths Ex-
ample 5.6 (Equation 5.38).

Bz(z) =
µ0I

2

a2

(a2 + z2)3/2
(7.1)

∫ ∞
−∞

Bz dz =
µ0I

2

∫ ∞
−∞

a2

(a2 + z2)3/2
dz (7.2)

Eq. (??) can be evaluated with the change of variables z =
a tan θ, dz = a sec2 θdθ.∫ ∞

−∞
Bz dz =

µ0I

2

∫ π/2

−π/2

a3 sec2 θ

a3(1 + tan2 θ)3/2
dθ (7.3)

=
µ0I

2

∫ π/2

−π/2
cos θ dθ (7.4)

∫ ∞
−∞

Bz dz = µ0I (7.5)

b) The current enclosed by this path is I. By Ampère’s law,
this integral should be µ0I. We can show this by breaking
the integral into two parts; one along the axis and another
around the semicircular arc at r =∞.∮

~B · d~̀= lim
r→∞

[∫ r

−r
Bz dz +

∫
arc

~B · d~̀
]

(7.6)∫ ∞
−∞

Bz dz + lim
r→∞

∫
arc

~B · d~̀ (7.7)

Now note that ~B goes as 1/r3 at r � a since the current
source has a dipole term. The integral path has length pro-
portional to r. The integral

∫
arc

~B·~̀has leading termO(1/r2).
In the limit r →∞, this portion of the integral vanishes.∮

~B · d~̀= µ0I (7.8)

8. Current sheet

Griffiths 5.27 (previously 5.26) Find the vector potential above
and below the x-y plane with uniform surface current density
K = kx̂.

SOLUTION: Example 5.8 gives the magnetic field for the
plane surface current.

~B =

{
+(µ0/2)Kŷ for z < 0
−(µ0/2)Kŷ for z > 0

(8.1)

Because the current source is infinite, we can’t just integrate
it to get the vector potential as would be suggested by Grif-
fiths Equation 5.64. However, we can use the properties of
the vector potential to get at it. First, the vector potential
generally points in the direction of the current so we would
expect ~A = Axx̂. Also, ∇ × ~A = ~B, so we can use Eq. (??)
to derive a differential equation for Ax.

∇× ~A =
∂Ax
∂z

ŷ − ∂Ax

∂y
ẑ = B̃ (8.2)

Below the plane we get:

∂Ax
∂z

=
µ0K

2

∂Ax
∂y

= 0 (8.3)

⇒ Ax =
µ0Kz

2
(8.4)

Above the plane we have something similar:

∂Ax
∂z

= −µ0K
2

∂Ax
∂y

= 0 (8.5)
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⇒ Ax = −µ0Kz
2

(8.6)

The vector potential is

~A = −µ0K
2
|z|x̂ (8.7)

We can check this solution by taking its curl and seeing that
it gives the expression for the magnetic field. This expression
for ~A is not unique, since we can add to it the gradient of any
function and its curl will not change.
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