
Physics 3323, Fall 2016 Problem Set 8 due Oct 21, 2014

Reading: Griffiths Chapter 5, 6.1-6.2

1. Charged spinning shell

Griffiths 5.37b (previously 5.36) Find the magnetic dipole mo-
ment of a spherical shell of radius R spinning with frequency
ω, with uniform surface charge density σ. Show that for points
r > R the potential is that of a perfect dipole.

SOLUTION:
Suppose that the sphere is spinning about its z-axis. The ring
at polar angle θ has charge

dq = 2πR sin θ(Rdθ)σ.

The current of the ring is

dI = dq
ω

2π
.

The area of the ring is

A = π(R cos θ)2

The magnetic moment of the sphere is

m =

∫
(πR2 sin2 θ)(2πR2 sin θ)

ω

2π
σdθ =

4πR4ωσ

3
.

2. A vector potential

Consider the vector potential ~A(~r) = 1
2
~c × ~r, where ~c is a

constant vector.

a) Does this potential satisfy the gauge choice ~∇ · ~A = 0?

b) What is the magnetic field?

SOLUTION:

a) We can use the vector product rules found in the front
cover of Griffiths to evaluate ∇ · ~A

∇ · ~A = ∇ ·
(

1

2
~c× ~r

)
=

1

2
~r(∇× ~c)− 1

2
~c(∇× ~r) (2.1)

Now ∇×~c = 0 since ~c is a constant vector and you can check
that ∇× ~r = 0. Yes, this potential satisfies the gauge choice
~∇ · ~A = 0

b) To get the magnetic field, we just need to take the curl of
~A.

~B = ~∇× ~A =
1

2
~∇× (~c× ~r) (2.2)

=
1

2

[
(~r · ~∇)~c− (~c · ~∇)~r + ~c(~∇ · ~r)− ~r(~∇ · ~c)

]
(2.3)

Now the first and last terms in Eq. (2.3) are both 0 since ~c is
a constant vector. The third term is 3~c since ~∇ · ~r = 3. The
second term can be calculated as follows:

(~c · ~∇)~r =

(
cx

∂

∂x
+ cy

∂

∂y
+ cz

∂

∂z

)
(xx̂ + yŷ + zẑ) (2.4)

= cxx̂ + cyŷ + czẑ = ~c (2.5)

Eq. (2.3) is

~B =
1

2
[−~c+ 3~c] = ~c (2.6)
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3. Vector potential of infinite solenoid

You have an infinitely long solenoid with radius R and N turns
of wire per unit length. The wire carries a current I.
a) Find the vector potential of this solenoid. Avoid looking

up the answer. It is useful to begin by showing that
∮
~A ·d~̀=∫

~B · n̂dA, where the LHS integral is around the edge of an
open surface with area A.
b) Compute ~∇ × ~A in cylindrical coordinates to show that

you get the correct magnetic field.

SOLUTION:

a) We know the magnetic field in the solenoid (Griffiths Ex-
ample 5.9).

~B =

{
µ0nI ẑ inside

0 outside
(3.1)

Let’s start by showing
∮
~A · d~̀ =

∫
~B · n̂dA as per the hint.

This is an application of Stokes theorem to the definition of
the vector potential∫

~B · n̂ dA =

∫ (
~∇× ~A

)
· n̂ dA =

∮
~A · d~̀ (3.2)

Now the vector potential generally points in the direction of
the current, so let’s suppose that ~A = Aφφ̂, that is the vector
potential points circumferentially. We create circumferential
Ampèrian loops. Inside the solenoid Eq. (3.2) becomes the
following:

µ0nI πs
2 = 2πsAφ ⇒ Aphi =

µ0nIs

2
(3.3)

Outside the solenoid we get:

µ0nI πR
2 = 2πsAφ ⇒ Aphi =

µ0nIR
2

2s
(3.4)

The solution is:

~A =

{
µ0nIs

2 φ̂ inside
µ0nIR2

2s φ̂ outside
(3.5)

b) We didn’t justify why the vector potential should point
circumferentially in the last part. The only justification we
need is to see if taking the curl of the vector potential gives
the correct magnetic field.

~B = ~∇× ~A = −
∂Aφ
∂z

ŝ +
1

s

∂

∂s
(sAφ) ẑ (3.6)

Inside:

~B =
1

s

∂

∂s

(
µ0nIs

2

2

)
ẑ = µ0nI ẑ (3.7)

Outside:

~B =
1

s

∂

∂s

(
µ0nIR

2

2

)
ẑ = 0 (3.8)

Comparison with Eq. (3.1) shows that this is indeed a correct
vector potential.

4. Square current loop

Griffiths 5.36. Find the exact magnetic field a distance d above
the center of a square loop of side w, carrying a current I. Ver-
ify that it reduces to the field of a dipole with the appropriate
dipole moment, when z � w.

SOLUTION:
Place the loop in the x-y plane with its center at the origin.
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We want the field at z = d. The magnetic field from a current
distribution is

B =
µ0I

4π

∫
dl′ × (r− r′)

|r− r′|3/2

Consider the contribution from the sides that extends from
x = −w/2 to x = w/2 at y = w/2.

dl′ = x̂dx

r = dẑ

r′ = xx̂ +
w

2
ŷ

Then
dl′ × (r− r′) = (−w

2
ẑ + dŷ)

Next
|r− r′|3 = (x2 + (w/2)2 + d2)3/2

Putting the pieces together we have the contribution to the
z-component of the field from one size is

Bz(z = d) =
µ0
4π
I

∫ −w/2
w/2

−w
2 dx

(x2 + (w/2)2 + d2)3/2

=
µ0I

8π

w2

((w/2)2 + d2)(w2/2 + d2)1/2

Each side will contribute the same. The total field in the
z-direction will be

Bz =
µ0I

2π

w2

((w/2)2 + d2)(w2/2 + d2)1/2

The net y-component of the field will be zero by symmetry.
In the limit z � w

Bz =
µ0I

2π

w2

d3

The field of a dipole is

Bdip =
µ0
4π

m

r3
(2 cos θr̂ + sin θθ̂)

At r = d, θ = 0, and m = w2I,

Bdip =
µ0
2π

w2I

d3
r̂

5. Magnetized cylinder

Griffiths 6.12. An infinitely long cylinder, of radius R, carries
a “frozen-in” magnetization, parallel to the axis,

M = ksẑ,

where k is a constant and s is the distance from the axis; there
is no free current anywhere. Find the magnetic field inside and
outside the cylinder by two different methods:

1. As in Section 6.2, locate all of the bound currents, and
calculate the field they produce.

2. Use Ampere’s law (in the form of Eq. 6.20) to find H,
and then get B from Eq. 6.18. (Notice that the second
method is much faster, and avoids any explicit reference
to the bound currents.)

SOLUTION:

a) There can be bound current density in the cylinder and a
bound surface current at the boundary of the cylinder s = R.

~Jb = ~∇× ~M =
1

s

∂Mz

∂φ
ŝ− ∂Mz

∂s
φ̂ = −k φ̂ (5.1)
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~Kb = ~M × n̂ = kR ẑ× ŝ = kR φ̂ (5.2)

We can think of cylindrical shells of thickness dz inside the
cylinder. If we divide up the cylinder like this, then we have
a set of concentric solenoids with surface current ~Jb ds plus
a solenoid with surface current ~Kb at the outside. The mag-
netic field at any point will have contributions from each of
the solenoids that surrounds it. Just as a reminder, a solenoid
with surface current K φ̂ has magnetic field B = µ0K ẑ in-
side. The magnetic field outside the cylinder is 0. Inside the
cylinder we have:

~B = µ0Kb ẑ + µ0 ẑ

∫ R

s
Jb ds = µ0kR ẑ− µ0 ẑ

∫ R

s
k ds (5.3)

~B = (µ0kR− µ0kR+ µ0ks) ẑ = µ0ks ẑ (5.4)

b) Here we just use Ampère’s law.
∮
~H · d~̀ = Ifenc. Since

there is no free current anywhere, ~H = 0 everywhere. Now
we use the relation:

~H =
1

µ0
~B − ~M (5.5)

~B = µ0 ~M = µ0ks ẑ (5.6)
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