
Physics 3323, Fall 2016 Problem Set 9 due October 28, 2016

Reading: Griffiths 7.1–7.2.2

1. Paramagnetic sample

A cylindrical solenoid has a single layer winding of radius r0.
It is so long that near one end, the field may be taken to be
that of a semi-inifinite solenoid. Show that the point on the
axis of the solenoid where a small paramagnetic sample will
experience the greatest force is located at a distance r0/

√
15

in from the end.

SOLUTION: The first thing we need to do is find out what
the magnetic field from a semi-infinite solenoid is along the
axis. To do this, we set up the semi-infinite solenoid so that
it starts at z = 0 and extends to z = ∞. We don’t really
know about a semi-infinite solenoid, but we do know the field
along the axis due to a ring of current centered on the axis.
Griffiths Example 5.6.

Bz =
µ0I

2

r2
0

(r2
0 + z2)3/2

(1.1)

Now since we know the field along the axis due to a ring
of current centered on the axis, we can slice the solenoid into
a bunch of rings centered on the z-axis at different values
of z′ and add the contributions from each. The current in
each ring will be the current in the solenoid multiplied by the
number of turns in the ring. Iring = Indz′, where n is the turn
density of the solenoid. Since this will be the contribution
from the free current only (not the induced dipole moment
in the paramagnetic material), it will be the ~H = ~B/µ0 field,

not the total magnetic field ~B. The ~H field at z due to a ring
at z′ will be given as:

dHz =
In dz′

2

r2
0(

r2
0 + (z′ − z)2

)3/2 (1.2)

Now we can add up the contribution from all of the rings.

Hz =
In

2

∫ ∞
0

r2
0(

r2
0 + (z′ − z)2

)3/2 dz′ (1.3)

The way to do this integral is by a change of variables z′−z =
r0 tan θ, dz′ = r0 sec2 θ dθ.

Hz =
In

2

∫ θ∞

θ0

r3
0 sec2 θ

r3
0 sec3 θ

dθ =
In

2

∫ θ∞

θ0

cos θ dθ (1.4)

Hz =
In

2
sin θ

∣∣∣∣θ∞
θ0

=
In

2

z′ − z√
r2

0 + (z′ − z)2

∣∣∣∣∣
∞

0

(1.5)

Hz =
In

2

[
1 +

z√
r2

0 + z2

]
(1.6)

This solution makes sense in the limits z → ±∞ since it goes
to the field due to an infinite solenoid when z → +∞ while
it goes to zero as z → −∞.

Now that we know the ~H field due to the semi-infinite
solenoid we can calculate the induced dipole moment in the
small piece of paramagnetic material. The material will have
some (positive) magnetic susceptibility χm. The induced
magnetization will be ~M = χm ~H. The magnetization is
the dipole moment per unit volume, so if the volume of the
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piece of material is V , the total induced dipole moment is
~m = V ~M = V χm ~H.

The force on a dipole in an external magnetic field is
~∇(~m · ~Bext). Here ~Bext is just the external field (not including
the field due to the induced dipole). In our case it is the
magnetic field from the semi-infinite solenoid ~Bext = µ0

~H

~F = ~∇(~m · ~Bext) = ~∇
(
V χm ~H · µ0

~H
)

(1.7)

In our case (along the z-axis) the fields are only in the z
direction and only depend on z, so this reduces to a one-
dimensional problem.

F = V χmµ0
d

dz

(
H2
z

)
(1.8)

= V χmµ0
I2n2

4

d

dz

(
1 +

z√
r2

0 + z2

)2

(1.9)

Now before we evaluate the derivative, note that we want the
maximum in the force so we will need to take a second deriva-
tive, set it equal to zero, and solve for z. The constants will
pass through this derivative opperation and can be divided
out. I want to solve the following equation for z.

d2

dz2

(
1 +

z√
r2

0 + z2

)2

= 0 (1.10)

To simplify this a little, let T = T (z) = z√
r20+z2

.

d2

dz2
(1 + T )2 =

d

dz

[
2(1 + T )

dT

dz

]
= 0 (1.11)

d

dz

[
(1 + T )

dT

dz

]
=

(
dT

dz

)2

+ (1 + T )
d2T

dz2
= 0 (1.12)

Now I can calculate the derivatives of T one at a time.

dT

dz
=

d

dz

(
z√

r2
0 + z2

)
=

√
r2

0 + z2 − z 1

2
√
r20+z2

2z

r2
0 + z2

(1.13)

dT

dz
=

1√
r2

0 + z2
− z2(

r2
0 + z2

)3/2 (1.14)

dT

dz
=

1

z

(
T − T 3

)
(1.15)

Now for the second derivative:

d2T

dz2
=

d

dz

dT

dz
=

d

dz

(
1

z

(
T − T 3

))
(1.16)

d2T

dz2
=
z
(
1− 3T 2

)
dT
dz −

(
T − T 3

)
z2

(1.17)

d2T

dz2
= −3T 2

z2

(
T − T 3

)
(1.18)

Now we have the derivatives and we can insert them into
Eq. (1.12).(
dT

dz

)2

+ (1 + T )
d2T

dz2
=
T 2

z2

(
1− T 2

)2 − (1 + T )
T 3

z2

(
1− T 2

)
(1.19)

This factors nicely.

=
T 2

z2
(1 + T )2 (1− T ) (1− 4T ) = 0 (1.20)

You can check that setting T = 0 gives an inflection point at
z = 0 while 1 ± T = 0 gives z = ±∞ respectively. Setting
1− 4T = 0 gives:

1− 4z√
r2

0 + z2
= 0 ⇒ 4z =

√
r2

0 + z2 (1.21)
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Figure 1: Note that z is measured in units of r0/
√

15

16z2 = r2
0 + z2 ⇒ z2 =

r2
0

15
⇒ z = ± r0√

15
(1.22)

A quick plot of a quantity proportional to F , ((1 + T )dTdz ),
shows that the negative solution is also a saddle point and
that the positive solution is a maximum.

z =
r0√
15

(1.23)

2. Sphere of magnetic material in uniform B
field

a) Griffiths 6.18. A sphere of linear magnetic material is

placed in an otherwise uniform magnetic field B0. Find the
new field inside the spere. [Hint : See Prob. 6.15 or Prob.

4.23.]
b) Griffiths 6.25 (was 6.23), part b. Notice the following

parallel:{
∇ ·D = 0, ∇× E = 0, ε0E = D−P, (no free charge.)
∇ ·B = 0, ∇×H = 0, µ0H = B− µ0M, (no free current.)

Thus the transcription D→ B,E→ H,P→ µ0M, ε0 → µ0

turns an electrostatic problem into an analogous magneto-
static one. Use this, together with your knowledge of the elec-
trostatic results, to rederive the magnetic field inside a sphere
of linear magnetic material in an otherwise uniform magnetic
field (Prob. 6.18).

SOLUTION:

a) We’ll let the otherwise uniform magnetic field point in
the z direction. ~B0 = B0 ẑ. Since ~Jf = 0 everywhere, we
can solve this in the form of Griffiths problem 6.15 by using
the magnetic scalar potential where ~H = −~∇W . We can
expand the magnetic scalar potential in terms of Legendre
polynomials.

W =

∞∑
`=0

(
A`r

` +
B`
r`+1

)
P`(cos θ) (2.1)

Since the inside of the sphere is different from the outside,
we’ll have a solution for outside the sphere Wout and a so-
lution for inside the sphere Win. These will fit the following
boundary conditions.

1.

Wout → −
B0

µ0
z = −B0

µ0
r cos θ as r →∞

2.
Wout(R) = Win(R)
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3.

µ0
∂Wout

∂r

∣∣∣∣
R

= µ
∂Win

∂r

∣∣∣∣
R

4.
Win(0) <∞

These boundary conditions should be sufficient to determine
W . The first comes from the fact that at large r, the field
should go to the uniform field B0 ẑ. This means that ~H =
1
µ0
~B → B0

µ0
ẑ, which leads to boundary condition 1. Boundary

conditions 2 and 3 are the regular magnetostatic boundary
conditions.

Boundary conditions 1 and 4 yield:

Wout = −B0

µ0
r cos θ +

∞∑
`=0

B`
r`+1

P`(cos θ) (2.2)

Win =
∞∑
`=0

A`r
`P`(cos θ) (2.3)

Boundary condition 2 gives:

A`R
` =

B`
R`+1

⇒ B` = A`R
2`+1 for ` 6= 1 (2.4)

A1R = −B0

µ0
R+

B1

R2
⇒ B1 =

(
A1 +

B0

µ0

)
R3 (2.5)

Boundary condition 3 gives:

µ`A`R
`−1 = −µ0(`+ 1)

B`
R`+2

⇒ B` =
µ`

µ0(l + 1)
A`R

2`+1 for ` 6= 1 (2.6)

µA1 = −
(
B0 +

2µ0B1

R3

)
⇒ B1 = −

(
µA1 +B0

2µ0

)
R3

(2.7)

Equating Eq. (2.4) and Eq. (2.6) gives:

A`R
2`+1 = A`R

2`+1 µ`

µ0(`+ 1)
⇒ A` = 0 for ` 6= 1 (2.8)

EquatingEq. (2.5) and Eq. (2.7) gives:(
A1 +

B0

µ0

)
R3 = −

(
µA1 +B0

2µ0

)
R3

⇒ A1 = − 3B0

2µ0 + µ
(2.9)

The magnetic scalar potential inside the sphere is

Win = − 3B0

2µ0 + µ
r cos θ = − 3B0

2µ0 + µ
z (2.10)

This gives the magnetic field in the sphere.

~B = µ ~H = −µ~∇Win =
3µB0

2µ0 + µ
ẑ =

3µ

2µ0 + µ
~B0 (2.11)

In terms of the relative permeability we have:

~B =
3µr

2 + µr
~B0 (2.12)

b) Griffiths Example 4.7 gives the formula for a uniform di-
electric sphere in an otherwise uniform electric field.

~E =
3

εr + 2
~E0 (2.13)

Using the prescribed transformation, we get:

~H =
3

µr + 2
~H0 (2.14)

4



Now ~H0 is defined for outside the sphere so ~H0 = ~B0/µ0 and
~H is describing the inside of the sphere, so ~H = ~B/µ. The
field in the sphere is:

~B =
3µ/µ0

µr + 2
~B0 =

3µr
µr + 2

~B0 (2.15)

We see that this is the same as Eq. (2.12).

3. Hemispherical capacitor

The hemispherical conducting shell (radius b) of Problem Set 6
is filled with a soft conducting plastic, characterized by a very
large relative dielectric constant εr and a very small electrical
conductivity σ. A needle-shaped conductor with a hemispher-
ical tip (radius a) is pressed into the plastic, as shown in the
figure, so that it is concentric with the shell.
a) If the conductors are maintained at a potential difference

V0, what current I flows from one to the other?
b) What is the resistance of this arrangement?

c) You now disconnect the battery so the charge will grad-

ually leak off. Show that V (t) = V0e
−t/τ , and find the time

constant τ in terms of the permittivity and conductivity.

SOLUTION:

a) From Problem Set 6 we have the electric field in the ca-
pacitor.

~E =
Q

4πεr2
r̂ (3.1)

From this the current density is:

~J = σ ~E =
Qσ

4πεr2
r̂ (3.2)

a
b

Figure 2: Capacitor for problem 3.

Now we would like to know Q in terms of V0. This is just
Q = CV0 and we know C from problem set 6.

C = 2πε

(
ab

b− a

)
(3.3)

~J =
V0σ2πε

4πεr2

(
ab

b− a

)
r̂ =

V0σ

2r2

(
ab

b− a

)
r̂ (3.4)

Now we can set up a hemispherical surface at some radius R
and integrate the current density over it to get the current

I =

∫
~J · d ~A =

V0σ

2R2

(
ab

b− a

)∫
dA =

V0σ

2R2

(
ab

b− a

)
2πR2

(3.5)

I = V0σπ

(
ab

b− a

)
(3.6)

This is independent of the particular radius R we chose to
integrate over, as it should be.

b)

R =
V0

I
(3.7)
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R =
1

πσ

(
1

a
− 1

b

)
(3.8)

c) The current is the rate at which the charge on the capacitor
is leaving, so I = −dQ

dt .

Q = CV = CRI = −RCdQ
dt

(3.9)

The solution to this differential equation is:

Q = Q0e
−t/RC (3.10)

In terms of V = Q/C we have

V =
Q

C
=
Q0

C
e−t/τ = V0e

−t/τ (3.11)

τ = RC =
1

πσ

(
1

a
− 1

b

)
2πε

(
1

a
− 1

b

)−1

=
2ε

σ
(3.12)

4. Susceptible wire

Griffiths 6.17. A current I flows down a long straight wire
of radius a. If the wire is made of linear material (copper,
say or aluminum) with susceptibility χm, and the current is
distributed unifromly, what is the magnetic field a distance s
from the axis? Find all the bound currents. What is the net
bound current flowing down the wire?

SOLUTION: H is given in terms of the free current∫
H(s) · dl =

s2

a2
I → H(s) =

s

2πa2
Iφ̂

B = µ0(1 + χm)H

Then

M(s) = −H +
1

µ0
B = χmH

The bound current

Jb = ∇×M =
1

s

∂

∂s
(sMφ)ẑ =

χm
πa2

I ẑ

The surface bound current

Ks = M× n̂ = − χm
2πa

I ẑ

5. Space charge effect

We’ll look at conducting plates of area A separated by a dis-
tance s, with a high enough electron density to affect the
field between the plates. In this limit we are interested in,
the “space charge” from the electron density near the cathode
large enough to cancel the field from the plates in that region.
Let’s summarize the facts for this limit:

• ~J · ~A = I (see Fig. 1),

• V (x) = 0 and dV/dx = 0 at x = 0,

• V (x) = V0 at x = s,

• Poisson: d2V/dx2 = −ρ/ε0,

• ρv(x) = Jx = −I/A,

• conservation of energy: mv2/2 = eV (x),
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x
0 s

E and J

A

Figure 3: Geometry for problem 5.

which will provide all the ingredients to solve for the potential
as a function of position (and hence for the electric field, charge
density, etc.).
a) Show that the potential satisfies

d2V

dx2
= KV −1/2

and find the constant K.
b) You can solve this differential equation by multiplying

both sides by the function 2 dV/dx, integrating, and perform-
ing a (different) change of integration variable on each side.
By doing so, find an equation for (dV/dx)2, using the bound-
ary conditions to determine any constants of integration.
c) Taking the square root gives you a first order differential

equation for V . By rearranging the terms to isolate V and
integrating, show that V ∝ x4/3. Sketch V and the magnitude
of the electric field as a function of distance into the gap.
d) Show that the relationship between the applied voltage

difference and the resulting current across the gap is given by
V

3/2
0 ∝ I, and hence that this configuration does not satisfy

Ohm’s law.

SOLUTION:

a) From Poisson, definition of current and conservation of
energy

dV 2

dx2
= −ρ/ε0, mv2/2 = eV (x), and ρ(x) = −I/A

we get
dV 2

dx2
= −−I

vA
=
I

A

√
m

2eV
= KV −1/2
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b) Multiply both sides by 2dV/dx

2
d2V

dx2

dV

dx
= 2KV −1/2dV

dx

2
dW

dx
W = 2KV −1/2dV

dx

2

∫
WdW = 2

∫
KV −1/2dV

W 2 |W0
0 = 4KV 1/2 |V00

W 2(x) = 4KV 1/2 → dV

dx
= 2K1/2V 1/4

c)
dV

dx
= 2K1/2V 1/4

∫ V0

0
V −1/4dV = 2K1/2

∫ s

0
dx

4

3
V 3/4 = 2K1/2x→ V (x) =

(
3

2

)4/3

K2/3x4/3

d) At x = s we have that

V0 =

(
3

2

)4/3

K2/3s4/3

Now to solve for I first write

K = V
3/2

0

(
2

3

)4/3 1

s4/3

But K = I
√

m
2eV

1
A so

V
3/2

0 ∝ I

6. Superconducting electrodes

Two plane parallel superconducting electrodes are separated
by an Ohm’s law medium of thickness s and cross sectional
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area A. Its resistivity ρ(z) varies linearly from ρ0, at the
positive electrode, to ρ0 + a at the negative electrode. The
permittivity ε is constant. Neglect edge effects and assume a
steady current I.
a) Find the total resistance of this Ohm’s law medium

b) Find the free charge density in the volume.

c) Find the free surface charge densities on the boundaries.

d) What is the total charge on the resistor?

SOLUTION:

a) J = E/ρ(z).

J ·A = I = E ·A/(ρ0 + a
z

s
)ẑ→ E =

I

A
(ρ0 + a

z

s
)ẑ∫ s

0
E · dl = V =

I

A
(ρ0s +

1

2
as)

→ R =
V

I
=

s

A
(ρ0 +

1

2
a).

b)
D = εE

ρf = ∇ ·D = ε
I

A

a

s

c) P = ε0χeE
σb = P · n̂

σb(z = 0) = −ε0χe
I

A
ρ0

σb(z = s) = ε0χe
I

A
(ρ0 + a)

where χe = ε/ε0 − 1. Also

σf (0) = Dabove
⊥ −Dbelow

⊥ = ε
I

A
ρ0

σf (s) = Dabove
⊥ −Dbelow

⊥ = −ε I
A

(ρ0 + a)

and

ρb(z) = −∇ ·P = −ε0χe
I

A

a

s

d) The total charge

Q = A

∫ s

0
(ρf + ρb)dz

= A

∫ s

0

(
ε
I

A

a

s
− ε0χe

I

A

a

s

)
dz

Q = Ia(ε− ε0χe)
= Iaε0

7. Earth’s field

A method for measuring the earth’s magnetic field is to use
a flip coil and a ballistic galvanometer. The coil, of radius a,
turns quickly through 180 degrees. The galvanometer mea-
sures the total charge that flows through the coil as it flips.
a) Explain how the vector ~B can be measured.

b) Suppose the coil axis is initially parallel to the magnetic

field, which has a strength of 0.5× 10−4 T,İf the radius a = 5
cm, and the resistance of the coil is R = 0.1Ω, what total
charge flows through the coil as it flips over?

9



SOLUTION:

a)Suppose there is some flux Φ = BA. As the coil flips
through 180 degrees the change in the flux through the coil
∆Φ = 2Φ. If the coil is in series with a resistor and a capac-
itor, then

E∆t = −dΦ

dt
∆t = (IR+

Q

C
)∆t

Measure the charge Q that flowed onto the capcitor to get
the flux. Divide by the area of the loop to get the field.

b) Since I = E/R and

Q = ∆tI =
1

R
∆Φ = 2

1

0.1
(0.5×10−4)(π(0.05)2) = 7.8×10−6Coulombs

8. Sliding bar

Griffiths 7.7. A metal bar of mass m slides frictionlessly on
two parallel conducting rails a distance l apart. A resistor R
is connected across the rails, and a uniform magnetic field B,
pointing into the page, fills the entire region.
a) If the bar moves to the right at speed v, what is the cur-

rent in the resistor? In what direction does it flow?
b) What is the magnetic force on the bar? In what direc-

tion?
c) If the bar starts out with speed v0 at time t = 0, and is

left to slide, what is the speed at a later time t?
d) The initial kinetic energy of the bar was, of course, 1

2
mv2

0.

Check that the energy delivered to the resistor is exactly 1
2
mv2

0.

SOLUTION:

a)The change in flux dΦ
dt = lvB = −E = −RI

→ I =
lvB

R

in the clockwise direction.

b)The magnetic force on the bar is due to the current flowing
in the circuit.

F = I

∫
dl×B =

vl2B2

R

to the left.

c)Use F = ma.
vl2B2

R
= m

dv

dt

Integration gives us
v = v0e

−t/τ

where τ = Rm
l2B2 .

d)The total energy dissipated in the resistor is

W =

∫ ∞
0

I2Rdt

I(t) =
lv(t)B

R
= v0e

−t/τ lB

R

W =

(
lB

R

)2

v2
0R

∫ ∞
0

e−2t/τdt =

(
lB

R

)2

v2
0R

τ

2

Substitution for τ = Rm
l2B2 gives

W =
1

2

(
lB

R

)2

v2
0

Rm

l2B2
R =

1

2
mv2

0
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