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1 Flux

Let’s talk about flux. Illustrate with field lines. Line has length proportional to
amplitude and direction of field. Or we can have continuous field lines and say that
the density gives the amplitude. We can define a flux of E through a surface S.

If a charge is placed at the center of a spherical shell, the flux through the shell
is q/ε0 independent of the radius of the sphere. But suppose the charge is not at the
center but a distance z from the center. Then we compute the flux as∫

E · da =
q

4πε0

∫
R− z cos θ

(R2 + z2 − 2Rz cos θ)3/2
R2 sin θdθdφ

=
2πq

4πε0

∫
R− zx

(R2 + z2 − 2Rzx)3/2
R2dx

where |r− r′| the distance from the charge to the surface is (R2 + z2 − 2Rz cos θ)1/2

and the component of r− r′ along the radial direction is

R− z cos θ

|r− r′|

From an integral table we have that

Φ =
q

2ε0

∫
R− zx

(R2 + z2 − 2Rzx)3/2
R2dx

=
q

2ε0

Rx− z
R2
√
R2 − 2Rxz + z2

R2|1−1

=
q

2ε0

(
R− z
±(R− z)

− −R− z
±(R + z)

)
=

q

ε0
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Suppose z > R. The argument of the square root is the distance from charge to
surface when θ = 0, π. It is always positive. So we take the − sign for the first term
and the + sign for the second term. The sum is zero.

So we showed that the flux through a spherical shell due to a point charge any-
where inside the shell is q/ε0 and zero if the charge is anywhere outside the shell.
And we can distort the shell any way we like without changing the flux through the
surface. It is after all the perpendicular component. The superposition principle
tells us that we can put as many charges as we like inside (or outside) and we will
find that the flux is the sum of the charges.

Then from the divergence theorem we know that∫
E · da =

∫
v

∇ · Edv =

∫
v

ρ

ε0
dv → ∇ · E =

ρ

ε0

This is equivalent to Coulomb’s law. Depends only on the inverse square dependence
and that the direction of the field is away from the charge.

2 Divergence

What about

∇ ·
r̂
r 2

We could evaluate in cartesian coordinates. Or in spherical. In spherical coordinates

∇ · v =
1

r2
∂

∂r
(r2vr) +

1

r sin θ

∂

∂θ
(sin θvθ) +

1

r sin θ

∂vφ
∂φ

and

∇ ·
r̂
r 2

= 0

everywhere except at the origin. Meanwhile we just determined that∫ r̂
r 2
· da = 4π

Then the divergence theorem says that∫
∇ ·

r̂
r 2

dv = 4π
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If it is zero everywhere except the origin and the integral over any volume that

includes the origin is the same, namely 4π then ∇· r̂
r 2 = 4πδ3(r ) since by definition∫

v

δ3( r̂ )dv = 1

Armed with this information we can see that∫
∇ · E =

∫
∇· r− r′

|r− r′|3
ρ(r′)dv =

∫
4πδ3(r− r′)ρ(r′)dv =

ρ

ε0

3 Gauss’ Law

Field of long wire
Field of infinite plane
Field of spherical shell
Or uniformly charged sphere

4 Field in a slab of charge

Uniform charge in slab thickness 2d along y-axis. Outside the slab, the field is in
y-direction and

EA = Adρ/ε0 → E =
ρd

ε0

and inside
E =

ρy

ε0

5 Review

Coulomb’s law
⇒ E =

q

4πε0
r̂r2

We showed that for charge at center of sphere∫
E · da =

q

ε
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and then for q anywhere inside ∫
E · da =

q

ε

(or outside) ∫
E · da = 0

Then we argued for a surface enclosing the charge of any shape. And then by linear
superposition ∫

E · da =

∫
ρ

ε0
dv

Then divergence theorem tells us that∫
E · da =

∫
∇ · Edv ⇒ ∇ · E =

ρ

ε

6 Divergence

What about

∇ ·
r̂
r 2

We could evaluate in cartesian coordinates. Or in spherical. In spherical coordinates

∇ · v =
1

r2
∂

∂r
(r2vr) +

1

r sin θ

∂

∂θ
(sin θvθ) +

1

r sin θ

∂vφ
∂φ

and

∇ ·
r̂
r 2

= 0

everywhere except at the origin. Meanwhile we just determined that∫ r̂
r 2
· da = 4π

Then the divergence theorem says that∫
∇ ·

r̂
r 2

dv = 4π
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If it is zero everywhere except the origin and the integral over any volume that

includes the origin is the same, namely 4π then ∇· r̂
r 2 = 4πδ3(r ) since by definition∫

v

δ3( r̂ )dv = 1

Armed with this information we can see that∫
∇ · E =

∫
∇· r− r′

|r− r′|3
ρ(r′)dv =

∫
4πδ3(r− r′)ρ(r′)dv =

ρ

ε0

Or in cartesian coordinates where

r̂ = sin θ cosφx̂ + sin θ sinφŷ + cos θẑ =
xx̂ + yŷ + zẑ√
x2 + y2 + z2

7 Field in a slab of charge

Uniform charge in slab thickness 2d along y-axis. Outside the slab, the field is in
y-direction and

EA = Adρ/ε0 → E =
ρd

ε0

and inside
E =

ρy

ε0
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8 Charge in the corner of a box

Box of side L with charge q in the corner. What is the flux through the opposite
side. If we make the charge the center of a cube with sides of length 2L then use
the fact that the total flux enclosed is q/ε0, we see that the flux through the L× L
section is 1

6
1
4
q
ε0

.
Or we could integrate∫

E · da =
q

4πε0

∫ L

0

∫ L

0

L

(x2 + z2 + L2)3/2
dxdz

=
q

4πε0

∫ L

0

Lx

(z2 + L2)(x2 + z2 + L2)1/2
|L0 dz

=
q

4πε0

∫ L

0

L2

(z2 + L2)(L2 + z2 + L2)1/2
dz

=
q

4πε0

∫ L

0

L2

(z2 + L2)(z2 + 2L2)1/2
dz

=
q

4πε0

L2 tan−1
(

z√
2L2+z2

)
L2

|L0

=
q

4πε0
tan−1

(
L√

2L2 + L2

)
=

q

4πε0
tan−1

(
1√
3

)
=

q

4πε0

2π

12

=
q

24ε0

9 Curl of E

Consider the line integral of the E-field

E · dl =
q

4πε0r2
r̂
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And dl = r̂dr + rdθθ̂ + r sin θdφφ̂ We find

E · dl = − q

4πε0r
|ba

The line integral is independent of the path and depends only on the end points and
in fact only on the distance of the end points from the source. Then around a closed
path

E · dl = 0

Stokes theorem ∮
P

F·dl =

∫
S

∇× F·da

Therefore ∇× E = 0 for static sources.
And in general for distributed source by linear superposition. This is a conse-

quence of direction away from source r̂ and really nothing much to do with 1
r2

. Could
be any function of f(r)r̂. Well maybe not any function. Any function that depends
only on |r|. Like 1/r3 or e−µr

r2
.

10 Potential

Since the electric field is a linear combination of contributions from charges q with
contribution from each

E =
1

4πε0

q

r2
r̂

and ∇× E = 0 for a point charge then it must be generally true that ∇× E = 0.
Which means that the line integral is independent of the path. Namely since∮

E·dl =

∫
∇× E · da

the line integral around a closed loop is zero and therefore the lintegral between any
two points in space is independent of the path.∫ b

a

E·dl, dl = r̂dr + rdθθ̂ + r sin θdφφ̂

E · dl =
1

4πε0

q

r2
r̂ · r̂dr

and ∫ b

a

E · dl = − 1

4πε0

q

r
|ba= −

1

4πε0

(
q

ra
− q

rb

)
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If ra = rb then ∮
→
∮

E·dbfl = 0

and from STokes theorem ∮
E · dl =

∫
s

(∇× E) · da

Then by superpositon for any E field. Integral from a to b independent of path so∫ r

O

E · dl

defines a function −V (r). Picture with collection of charge in region to loeft. points
a and b and r to right. Integral from far away, where E = 0 to those points gives
potential.

Then calculus tells us that

V (b)− V (a) =

∫ b

a

∇V · dl⇒ −∇V = E

Sphere with uniform surface charge. Use Gauss’s law to get E. Then integrate to get
V (R) etc. Plot V (r) and E(r).

11 Poisson and Laplace

In a region where there is charge

−∇ · ∇V =
ρ

ε0

In empty space
−∇ · ∇V = 0

12 Boundary conditions∮
S

E · n̂da =
Qend

ε0
=

1

ε0
σA⇒ Eabove

⊥ − Ebelow
⊥ =

σ

ε0∮
E · dl = 0⇒ Eabove

‖ = Ebelow
‖
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Summary

Eabove − Ebelow =
σ

ε0
n̂

Potential continuous at boundary. since
∫ b
a
E · dl across boundary → 0. Gradient

consistent with BC for E.
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13 Potential

Since the electric field is a linear combination of contributions from charges q with
contribution from each

E =
1

4πε0

q

r2
r̂

and ∇× E = 0 for a point charge then it must be generally true that ∇× E = 0.
Which means that the line integral is independent of the path. Namely since∮

E·dl =

∫
∇× E · da

the line integral around a closed loop is zero and therefore the lintegral between any
two points in space is independent of the path.∫ b

a

E·dl, dl = r̂dr + rdθθ̂ + r sin θdφφ̂

E · dl =
1

4πε0

q

r2
r̂ · r̂dr

and ∫ b

a

E · dl = − 1

4πε0

q

r
|ba= −

1

4πε0

(
q

ra
− q

rb

)
If ra = rb then ∮

→
∮

E·dl = 0

and from Stokes theorem ∮
E · dl =

∫
s

(∇× E) · da

Then by superpositon for any E field. Integral from a to b independent of path so∫ r

O

E · dl

defines a function −V (r). Picture with collection of charge in region to loeft. points
a and b and r to right. Integral from far away, where E = 0 to those points gives
potential.
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Then calculus tells us that

V (b)− V (a) =

∫ b

a

∇V · dl⇒ −∇V = E

Sphere with uniform surface charge. Use Gauss’s law to get E. Then integrate to get
V (R) etc. Plot V (r) and E(r).

14 Poisson and Laplace

In a region where there is charge

−∇ · ∇V =
ρ

ε0

In empty space
−∇ · ∇V = 0

15 Boundary conditions∮
S

E · n̂da =
Qend

ε0
=

1

ε0
σA⇒ Eabove

⊥ − Ebelow
⊥ =

σ

ε0∮
E · dl = 0⇒ Eabove

‖ = Ebelow
‖

Summary

Eabove − Ebelow =
σ

ε0
n̂

Potential continuous at boundary. since
∫ b
a
E · dl across boundary → 0. Gradient

consistent with BC for E.

16 Work

Consider a charge q at r1. The efield of the charge is E1 = 1
4πε0

qr−r1
|r−r1|3 . The work

done bringing another charge q′ from far away to r2 a distance d from q1 is∫ d

∞
F · dl = −q2

∫ d

∞
E1 · dl = q2V1(r2)
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where V (d) is the potential of the charge q at d. (The - sign is because the force
we have to apply is opposite to the electric field. We might as well have put q2 at
the origin, figured out the potential and then brought q in from infinity to d. Same
work. So the work is the charge times the potential of the other charge. And we can
make it symmetric by writing

W =
1

2
(q2V1 + q1V2)

W =
1

2

n∑
i=1

qi

(
n∑
j 6=i

1

4πε0

qj
rij

)
=

1

2

n∑
i=1

qiV (ri)→
1

2

∫
ρV dτ

W =
1

2

∫
ρV dτ =

ε0
2

(∫
V

E2dτ +

∮
S

VE · da
)
→ ε0

2

∫
V

E2dτ
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