
Intermediate Electricity and Magnetism

September 12-16, 2016

Lecture 8
September 12, 2016

1 Laplace’s Eqn.

Gauss’s law says ∇ · E = − ρ
ε0

and E = −∇V . Therefore

∇2V =
ρ

ε0

and in a region of space with no charge

∇2V = 0.

In one dimension? Suppose twe have two infinite parallel plates in the y-z plane.
With separation d along x. The potential depends only on x. Let the potential on
the plane at x = 0 is V0 and the potential on the plane at x = d is 0. Since the
second derivative is zero every where in between, it must be that for all x in between

V0 > V (x) > 0

Because a zero second derivative indicates a maximum or minimum. In 2 and 3
dimensions things get a bit more complicated. We only know for sure that the sum
of the second derivatives is zero. But we can say something like the value between
the boundaries is some kind of average on the boundaries.

Cartesian coordinates

∇2V =
∂2V

∂x2
+
∂2V

∂y2
+
∂2V

∂z2
= 0

Sperical coordinates

∇2V =
1

r2
∂

∂r

(
r2
∂V

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+

1

r2 sin2 θ

∂2V

∂φ2
= 0
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Cylindrical coordinates

∇2V =
1

s

∂

∂s

(
s
∂V

∂s

)
+

1

s2
∂2V

∂φ2
+
∂2V

∂z2
= 0

1.1 Average- 2 D

The average on a circle around a point is the same as the value at that point.

V (x, y) = Vavg =
1

2πR

∮
circle

V dl

So no local min or max. Say there is a max. Use it as the center of a circle. Average
over the circle. The average would be less. So therefore no peaks allowed.

1.2 Average 3D

Pick any point in space V (r). Use it as the center of a spherical boundary. Compute
the average potential on the boundary. It will be equal to the value at the center.

V (r) = Vavg =
1

4πR2

∮
sphere

V da

Same reasonaing as before. No local max or min allowed.
Proof: Field of a point charge a distance z from the center of a sphere. The goal

is to average the potential of the point charge over the surface of the sphere and
compare to the potential at the center of the sphere. The potential on the surface
at R, θ, φ is

V (R, θ) =
q

4πε0

1√
z2 +R2 − 2Rz cos θ

and

V da =
q

4πε0

1√
z2 +R2 − 2Rz cos θ

2πR2sinθdθ

Vave =
1

4πR2

q

4πε0

∫ π

0

1√
z2 +R2 − 2Rz cos θ

2πR2sinθdθ

Vave =
1

4πR2

q

4πε0

∫ 1

−1

1√
z2 +R2 − 2Rzx

2πR2dx

Vave = −2πR2

4πR2

q

4πε0

1

2zR

√
z2 +R2 − 2Rzx |1−1
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Vave = −2πR2

4πR2

q

4πε0

1

2zR
((z −R)− (z +R)) =

q

4πε0

1

z

which sure enough is the potential due to the charge at the center of the sphere.
Thanks to supperposition, the same will be true for any charge distribution outside
the sphere so it must be true in general.

2 Uniqueness 1

If we know the potential on the boundary of a region, then the potential everywhere
inside the boundary is uniquely determined. Proof: Suppose there are two solutions
V1 and V2. Then V3 = V2−V1 = 0 on the boundary. And∇2V3 = 0. If it is zero on the
boundaries and there are no local max or min it must be zero everywhere.Therefore
V1 = V2. A result is that there is no way to electrostatically confine a charged
particle.

We can always add some charge and thenthe potential in a volume V is uniquely
determined if the charge density throughout the region is known and if the potential
on the boundary is known.

3 Uniqueness 2 - conductors

A volume V is surrounded by conductors and there is some charge density ρ be-
tween the conudctors and maybe on the conductors. The electric field is uniquely
determined if the total charge on each conudctor is given. Note, the potential is not
unique. We can always add some constant. We could connct each conductor to a
battery at voltage V0 and offset the whole deal.
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4 Separation of Variables - Spherical Coordinates

laplace’s equation in spherical coordinates

∇2V =
1

r2
∂

∂r

(
r2
∂V

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+

1

r2 sin2 θ

∂2V

∂φ2

Assume azimuthal symmetry, multiply by r2 and we get

∂

∂r

(
r2
∂V

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
= 0

Separate variables by writing V (r, θ) = R(r)Θ(θ). Substitute into differential equa-
tion above and divide by R(r)Θ(θ) and we have

1

R

∂

∂r

(
r2
∂R

∂r

)
+

1

Θ sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
= 0

Solution requires that

1

R

∂

∂r

(
r2
∂R

∂r

)
= constant ≡ l(l + 1)

1

Θ sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
= −l(l + 1)

The general solution for

R(r) = Arl +
Bl

rl+1

and
Θ(θ) = Pl(cos θ)

5 Spherical Shell with charge distribution

Boundary conditions are V (r →∞) = 0, V (0) is finite, and at the boundary of the
surface, continuous. Inside solution

Vin =
∞∑
l=0

Alr
lPl
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and outside

Vout =
∞∑
l=0

Bl

rl+1
Pl

Vout is zero at r =∞ and Vin is finite at r = 0. Potential is continuous at a boundary
so

Vin =
∞∑
l=0

AlR
lPl = Vout =

∞∑
l′=0

Bl′

Rl′+1
Pl′

Multiply left and right by Pl′′ sin θdθ and integrate from 0 to π to get

∞∑
l=0

AlR
l 2δl,l′′

2l + 1
=
∞∑
l′=0

Bl′

Rl′+1

2δl′,l′′

2l′ + 1

→ Al′′R
l′′ =

Bl′′

Rl′′+1

and
Bl = AlR

2l+1

There is another boundary condition at the surface of the sphere. We know from
Gauss’s law that

Eabove
⊥ − Ebelow

⊥ =
σ

ε0

and

Eperp = −∂V
∂n

At the surface of the sphere ∂V
∂n

= ∂V
∂r

so

∂V out

∂r
− ∂V in

∂r
= −σ(θ)

ε0

Using everything we know so far we get that

∞∑
l=0

(2l + 1)Rl−1Pl(θ) =
σ(θ)

ε0

Multiply both sides by Pl′(cos θ) sin θdθ and integrate and we get

Al =
1

2Rl−1

∫ π

0

σ(θ)

ε0
Pl(cos θ) sin θdθ
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where we used
∫
PlPl′ sin θdθ = 2

2l+1
δl,l′ For the sphere where the top half has σ = σ0

and the bottom σ = −σ0

Al =
1

2ε0Rl−1

[∫ π/2

0

Pl(cos θ)−
∫ π

π/2

Pl(cos θ)

]
sin θdθ

A0 = 0

A1 =
1

2ε0

Even terms are zero. Next term is A3. Note that P3 = (5 cos3 θ − 3 cos θ)/2. Then

Vout ∼
B1

r2
cos θ =

σR3

2ε0

cos θ

r2

6 Dipole moment

p =

∫
r′ρ(r′)dτ ′

Let’s compute the dipole moment for that split sphere.

p = 2

[
2πR2

∫ π/2

0

σ sin θdθR cos θ

]
= 2πR3σ

Vdip =
p cos θ

4πε0r2
= σ

R3

2ε0

cos θ

r2

7 Conducting spherical shell in uniform E-field

The uniform E-field E = E0ẑ derives in spherical coordinates from a potential

V (r, θ) = −E0z + C = −E0r cos θ + C

Set C = 0 so V (0) = 0. Check that by taking

∇ · V =
∂V

∂r
r̂ +

1

r

∂V

∂θ
θ̂ +

1

r sin θ

∂V

∂φ
φ̂

At large r, V (r, θ)→ −E0r cos θ. And at r = 0, V (r) = 0. We can write

Vin =∼∞l=0 A
in
l r

lPl
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and

Vout =
∑(

Aoutl rl +
Bl

rl+1

)
Pl

The sphere is a conductor so the otential inside is everywhere the same, namely zero.
All Ainl = 0. To match the large r boundary condition, A1 = −E0 and Al, l 6= 0 = 0.
The surface of the sphere is an equipotential so∑(

AlR
l +

Bl

rl+1

)
Pl = 0

Since the Pl are orthogonal, the only way the sum is zero is if

AlR
l = − Bl

rl+1

for all l. There A1 = −B1

R3 and all other Al and Bl are zero. Therefore

Vout = −E0(r −
R3

r2
)P1(cos θ) = −E0(r −

R3

r2
) cos θ

The induce charge

σ(θ) = −ε
(
∂Vout
∂r
− ∂Vin

∂r

)
|r=R = ε(3E0) cos θ
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