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1 Separation of Variables - Spherical Coordinates

laplace’s equation in spherical coordinates

∇2V =
1

r2
∂

∂r

(
r2
∂V

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+

1

r2 sin2 θ

∂2V

∂φ2

Assume azimuthal symmetry, multiply by r2 and we get

∂

∂r

(
r2
∂V

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
= 0

Separate variables by writing V (r, θ) = R(r)Θ(θ). Substitute into differential equa-
tion above and divide by R(r)Θ(θ) and we have

1

R

∂

∂r

(
r2
∂R

∂r

)
+

1

Θ sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
= 0

Solution requires that

1

R

∂

∂r

(
r2
∂R

∂r

)
= constant ≡ l(l + 1)

1

Θ sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
= −l(l + 1)

The general solution for

R(r) = Arl +
Bl

rl+1

and
Θ(θ) = Pl(cos θ)
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2 Spherical Shell with charge distribution

Boundary conditions are V (r →∞) = 0, V (0) is finite, and at the boundary of the
surface, continuous. Inside solution

Vin =
∞∑
l=0

Alr
lPl

and outside

Vout =
∞∑
l=0

Bl

rl+1
Pl

Vout is zero at r =∞ and Vin is finite at r = 0. Potential is continuous at a boundary
so

Vin =
∞∑
l=0

AlR
lPl = Vout =

∞∑
l′=0

Bl′

Rl′+1
Pl′

Multiply left and right by Pl′′ sin θdθ and integrate from 0 to π to get

∞∑
l=0

AlR
l 2δl,l′′

2l + 1
=
∞∑
l′=0

Bl′

Rl′+1

2δl′,l′′

2l′ + 1

→ Al′′R
l′′ =

Bl′′

Rl′′+1

and
Bl = AlR

2l+1

There is another boundary condition at the surface of the sphere. We know from
Gauss’s law that

Eabove
⊥ − Ebelow

⊥ =
σ

ε0
and

Eperp = −∂V
∂n

At the surface of the sphere ∂V
∂n

= ∂V
∂r

so

∂V out

∂r
− ∂V in

∂r
= −σ(θ)

ε0

Using everything we know so far we get that

∞∑
l=0

(2l + 1)Rl−1Pl(θ) =
σ(θ)

ε0
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Multiply both sides by Pl′(cos θ) sin θdθ and integrate and we get

Al =
1

2Rl−1

∫ π

0

σ(θ)

ε0
Pl(cos θ) sin θdθ

where we used
∫
PlPl′ sin θdθ = 2

2l+1
δl,l′ For the sphere where the top half has σ = σ0

and the bottom σ = −σ0

Al =
1

2ε0Rl−1

[∫ π/2

0

Pl(cos θ)−
∫ π

π/2

Pl(cos θ)

]
sin θdθ

A0 = 0

A1 =
1

2ε0

Even terms are zero. Next term is A3. Note that P3 = (5 cos3 θ − 3 cos θ)/2. Then

Vout ∼
B1

r2
cos θ =

σR3

2ε0

cos θ

r2

3 Dipole moment

p =

∫
r′ρ(r′)dτ ′

Let’s compute the dipole moment for that split sphere.

p = 2

[
2πR2

∫ π/2

0

σ sin θdθR cos θ

]
= 2πR3σ

Vdip =
p cos θ

4πε0r2
= σ

R3

2ε0

cos θ

r2
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Lecture 13
September 21, 2016

4 Conducting spherical shell in uniform E-field

The uniform E-field E = E0ẑ derives in spherical coordinates from a potential

V (r, θ) = −E0z + C = −E0r cos θ + C

Set C = 0 so V (0) = 0. Check that by taking

∇ · V =
∂V

∂r
r̂ +

1

r

∂V

∂θ
θ̂ +

1

r sin θ

∂V

∂φ
φ̂

At large r, V (r, θ)→ −E0r cos θ. And at r = 0, V (r) = 0. We can write

Vin =∼∞l=0 A
in
l r

lPl

and

Vout =
∑(

Aoutl rl +
Bl

rl+1

)
Pl

The sphere is a conductor so the otential inside is everywhere the same, namely zero.
All Ainl = 0. To match the large r boundary condition, A1 = −E0 and Al, l 6= 0 = 0.
The surface of the sphere is an equipotential so∑(

AlR
l +

Bl

rl+1

)
Pl = 0

Since the Pl are orthogonal, the only way the sum is zero is if

AlR
l = − Bl

rl+1

for all l. There A1 = −B1

R3 and all other Al and Bl are zero. Therefore

Vout = −E0(r −
R3

r2
)P1(cos θ) = −E0(r −

R3

r2
) cos θ

The induce charge

σ(θ) = −ε
(
∂Vout
∂r
− ∂Vin

∂r

)
|r=R = ε(3E0) cos θ

4



5 Polarization

We are looking for a way to describe fields in matter. At the very local level, the
fields will change abruptly due to all te electrons and protons. So it is useful to think
about the average efield over some volume that is large compared to an atom but
small compared to the dimensions of the material.

The average electric field within a spherical volume is determined by the average
dipole moment (the polarization) of the charge within the sphere. That is

Eave = − 1

4πε0

p

R3
= − 1

3ε0
P

This is easy to show. Consider a spherical volume, radius R and single point charge
q at r = a. Might as well put the charge on the z-axis. The average electric field
within the sphere is in the z direction. The other directions cancel by symmetry. So
we just need to integrate the z-component.

〈Ez〉V =
q

4πε0

∫
r cos θ − a

(a2 + r2 − 2ar cos θ)3/2
r2dr sin θdθdφ

〈Ez〉V =
q

4πε0

∫
rx− a

(a2 + r2 − 2arx)3/2
r2drdxdφ

〈Ez〉V =
2πq

4πε0a2

∫
r − ax

(a2 + r2 − 2arx)1/2
|1−1 r2dr

〈Ez〉V =
q

2ε0a2

∫ (
(±(r − a)

(r − a)
− r + a

r + a

)
r2dr

〈Ez〉V = − q

2ε0a2
2

∫ a

0

r2dr

〈Ez〉V = − q

2ε0a2
2

3
a3

〈Ez〉 = − q

2ε0

2

3
a

1
4
3
πR3

〈Ez〉 = − p
ε0

1

4πR3

The average field is proportional to the dipole moment. The contribution to the
average field from an arbitrary charge distribution will be superposition of the dipole
moments of each of the charges. So that last equation becomes

〈E〉 = −ptot
ε0

1

4πR3
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And since the polarization is the average dipole moment over the volume,

〈E〉 = − P

3ε0

6 Field of a polarized object

The potential due to a dipole at r′ is

V (r) =
1

4πε0

p · (r− r′)

|r− r′|3

If it is a perfect dipole, then this is true for any r. If the dipole moment

p = P(r′)dτ ′

Then

V (r) =
1

4πε0

∫
P(r′) · (r− r′)

|r− r′|3
dτ ′

The average field within a spherical volume is given by the polarization. And the
field outside due to the polarization inside. (Of course if there is net charge in the
volume, that will also contribute to the field outside as a monopole.) Next rearrange
Using

∇′ 1

|r − r′|
=

r̂
r 2

Substituting into the expression for the potential

V (r) =
1

4πε0

∫
P(r′) · ∇′ 1

r dτ ′

Integrate by parts

V (r) =
1

4πε0

(∫
∇′ ·

(
P

r

)
dτ ′ −

∫
1

r ∇ ·Pdτ
′
)

Then from the divergence theorem

V (r) =
1

4πε0

(∫
S

(
P·da′

r

)
−
∫
V

1

r ∇ ·Pdτ
′
)

Define σb = P · n̂ and ρb = −∇ ·P and the potential due to the polarized stuff
becomes sum of contribution from surface charge and from volume charge

V (r) =
1

4πε0

(∫
S

σb
r da′ +

∫
V

ρb
r dτ ′

)
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7 Uniformly polarized sphere

Uniform polarization P The bound surface charge

σb = P · n̂ = P cos θ

where we suppose P = P ẑ. The bound volume charge density ρb = 0. We could
calculate the potential by integrating the surface bound charge. But we already
know that since the polarization is uniform, the field outside is equivalent to that of
a dipole at r = 0, namel

Vout =
4

3
πR3P

cos θ

4πε0r2

and inside we just integrate to r

Vin =
4

3
πr3P

cos θ

4πε0r2
=
Pr cos θ

3ε0

The electric field inside

E = −∇V = − P

3ε0
ẑ

8 Surface bound charge

Consider a cylinder of length d and cross section A and polarization P . The dipole
moment of the cylinder is p = PAd = qd where q is the charge at each end. Therefore
q = PA and σ = P . or P · n̂

9 Accumulation of Bound charge

If the polarization is uniform, there is no accumulation of bound charge. But if
non-uniform, like a bunch of dipoles with negative end near r = 0 and positive end
radially out, there is an accumulation of negative charge in the center. The positive
is pushed through the surface of the volume. Then∫

V

ρbdτ = −
∮
S

P·da = −
∫
V

(∇ ·P)dτ

Therefore
ρb = −∇ ·P
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