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Electron in a rotating magnetic field

Rotating frame

Suppose we have an electron at rest in a magnetic field
B = By(sin a cos wti 4 sin asinwtj + cos a/%)

So the field vector points along the polar angle o and rotates about the z-
axis with frequency w. It is convenient to transform into the rotating frame.
At t = 0, the magnetic field is B = By cos ok + Bysinai. At a later time
the field has rotated about the z-axis by an angle § = wt. If we rotate the
spinor about the z-axis we can move to a frame in which the hamiltonian is
independent of time. A rotation about z is accomplished with
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and Hj is the time independent hamiltonian in the rotating frame.
Then
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Since R~! does not commute with % we need to be careful in the next step.
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With this in mind we can write
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where ¥/ = Ry and H' = Hy + %“’Uz. Now we have a time independent
hamiltonian. To solve we can compute eigenvalues and eigenvectors to get
X'(t) and then transform back to the lab frame.
Another strategy is to construct the time translation operator e
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Adiabatic approximation

If we return to the original hamiltonian H, and define 1, such that
H(t)%(t) - En<t)1/}n(t)

then
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are eigenvectors of the hamiltonian (Equation 1 ) with eigenvalues Fy =
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In the adiabatic limit, w < w;
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Berry phase

The dynamic phase is §, = —w;t/2. The remaining phase is geometric
v+ = (w/2)(—cosa+1). Unfortunately I started out rotating in the negative
¢ direction. If w changes sign then v, = (w/2)(cos @ — 1) and Berry’s phase
is (w/2)2% (cosa — 1) = w(cos @ — 1). 1/2 of the solid angle subtended by the
tip of magnetic field vector.

We could also get the geometric phase by
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That last — comes from integrating backwards.
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