
Sample final questions.

1. Estimate the lifetime of an excited state of hydrogen. Give your answer in terms of
fundamental constants.

2. A one-dimensional harmonic oscillator, originally in the ground state, is acted on by
a force f(t). Find the motion of the center of the wave packet (〈x〉) by first-order
perturbation theory.

3. Particle A with spin 1
2

and particle B with spin 1 are in a total angular momentum
state
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2
〉 =

√
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2
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2
〉 −
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3
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〉


What are 〈JBz〉, 〈J2

B〉 and 〈JAz〉?

4. Consider the problem of a two-dimensional harmonic oscillator in Cartesian coordi-
nates. The Hamiltonian is

H =
p2
x

2m
+

p2
y

2m
+

1

2
k(x2 + y2)

(a) Write H and Lz in terms of the creation and annihilation operators in two di-
mensions, ax, a

†
x, ay, a

†
y. Show, using the commutation relation of the a and a†

operators, that Lz commutes with H.

(b) Consider the two eigenstates | u01〉 and | u10〉 belonging to the first excited state
of the oscillator (N = 1). Are these eigenstates of Lz? What are the eigenvalues?

(c) Demonstrate your answer to part (b) using the form of Lz derived in part (a) in
terms of a, a† operators. Reconcile your answer with the conclusion reached in
part (a).

5. What is the ground state wave function for two identical particles in a one dimensional
box if the two particles are (a) fermions, (b) bosons ?

6. Two identical particles, each of mass m, move in one dimension in the potential

V (x1, x2) =
1

2
A(x2

1 + x2
2) +

1

2
B(x1 − x2)2

where A and B are positive constants and x1 and x2 denote the positions of the
particles.
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(a) Show that the Schrodinger equation is separable in the variables x1 + x2 and
x1 − x2. Find the eigenvalues.

(b) What is the symmetry of the eigenfunctions with respect to particle exchange?

7. Explain why for two identical spin-1
2

fermions, the scattering amplitude should be
written in the form

f = [fs(θ) + fs(π − θ)] + [ft(θ)− ft(π − θ)]

where the subscripts s and t refer to singlet and triplet spin states, respectively.

8. Given the matrix

H0 =

 2 0 0
0 2 0
0 0 4


and for the perturbation

H1 =

 0 1 0
1 0 1
0 1 0


in the orthonormal basis | φ1〉, | φ2〉, and | φ3〉, determine the energy eigenvalues correct
to second order in the perturbation.

9. Use the variational method for solving the Schrodinger equation for the truncated
harmonic oscillator potential

V (x) = 1
2
kx2 for x > 0

= ∞ for x < 0

Use the trial wave function ψ = exp(−bx), (b is the variational paramter) to calculate
an approximate value for the ground state energy and compare with the exact result.

10. A particle of mass m is initially in the ground state of the (one-dimensional) infinite
square well. At time t = 0 a ”brick” is dropped into the well, so that the potential
becomes

V (x) =


V0, if 0 ≤ x ≤ a/2,
0, if a/2 < x ≤ a,
∞, otherwise,

where V0 � E1. After a time T , the brick is removed, and the energy of the particle is
measured. Find the probability (in first-order perturbation theory) that the result is
now E2.
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11. The delta function well V (x) = −αδ(x), supports a single bound state,

ψ(x) =

√
mα

h̄
e−mα|x|/h̄

2

; E = −mα
2h̄2 .

calculate the grometric phase change when α gradually increases from α1 to α2. If the
increase occurs at a constant rate (dα/dt = c), what is the dynamic phase change for
this process?

12. Scattering
The Yukawa potential is a phenomonological model for the force between a π and a
He nucleus.

V (r) = β
e−µr

r

where β and µ are constants.

(a) Compute the scattering amplitude in the Born approximation for a π with energy
E scattering off the He nucleus. You can assume that the He nucleus is fixed
in space. Show the angular dependence explicitly. For spherically symmetric
potentials the Born approximation for the scattering amplitude is

f(θ) ∼ − 2m

h̄2κ

∫ ∞
0

rV (r) sin(κr)dr

and κ = 2k sin(θ/2).

(b) Compute the total cross-section and express your answer as a function of E.

3



Formulae and Tables

•

HΨ = ih̄
∂Ψ

∂t

− h̄2

2m

∂2

∂x2
Ψ(x, t) = ih̄

∂

∂t
Ψ(x, t)

• Born approximation

f(θ, φ) ∼ − m

2πh̄2

∫
ei(k

′−k)·r0V (r0)d3r0

• Born approximation for spherically symmetric potential.

f(θ) ∼ − 2m

h̄2κ

∫ ∞
0

rV (r) sin(κr)dr

Where κ = 2k sin(θ/2).

• Spontaneous emission rate

A =
ω3| 〈ψf | q~r | ψi〉 |2

3πε0h̄c3

• Stimulated emission and absorbtion rate

Rb→a =
π

3εoh̄
| 〈ψf | q~r | ψi〉 |2ρ(ω0)

• Blackbody energy density of thermal radiation

ρ(ω) =
h̄

π2c3

ω3

eh̄ω/KBT − 1

• One dimensional harmonic oscillator

H =
p̂2

2m
+

1

2
mω2x̂2

a± =
1√
2m

(p̂± imωx̂)

a+ψn =
√

(n+ 1)h̄ωψn+1
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a−ψn =
√
nh̄ωψn−1

[a−, a+] = h̄ω

H = a−a+ −
1

2
h̄ω

Hψn = (n+
1

2
)h̄ω

• Time independent perturbation theory

E1
n =

〈
ψ0
n | H ′ | ψ0

n

〉
• Relativisitic energy momentum

E =
√
p2c2 + (mc2)2

• Time dependence of an expectation value

d〈Q〉
dt

=
i

h̄
〈[H,Q]〉+ 〈∂Q

∂t
〉

• Three dimensional infinite cubical well

ψnx,ny ,nz(x, y, z) =
(

2

a

)3/2

sin
(
nxπ

a
x
)

sin
(
nyπ

a
y
)

sin
(
nzπ

a
z
)

E0
nx,ny ,nz

=
π2h̄2

2ma2
(n2

x + n2
y + n2

z)

• Time dependent perturbation theory

cb(t) = − i
h̄

∫ t

0
H ′ba(t

′)eiω0t′dt′

• Spin 1/2

Sx =
h̄

2
σx =

h̄

2

(
0 1
1 0

)
, Sy =

h̄

2
σy =

h̄

2

(
0 −i
i 0

)
, Sz =

h̄

2
σz =

h̄

2

(
1 0
0 −1

)
 〈

1
2
, 1

2
(z′) | Ry(θ) | 1

2
, 1

2
(z)
〉 〈

1
2
, 1

2
(z′) | Ry(θ) | 1

2
,−1

2
(z)
〉

〈
1
2
,−1

2
(z′) | Ry(θ) | 1

2
, 1

2
(z)
〉 〈

1
2
,−1

2
(z′) | Ry(θ) | 1

2
,−1

2
(z)
〉 =

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
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• Berry phase

γn(T ) = i
∫ T

0
〈ψn |

∂ψn
∂t′
〉 · dt′

γn(T ) =
∮
〈ψn | ∇Rψn〉 · dR

• Time independent perturbation theory

E1
n =

〈
ψ0
n | H ′ | ψ0

n

〉

ψ1
n =

∑
m6=n

〈ψ0
m | H ′ | ψ0

n〉
(E0

n − E0
m)

ψ0
m

E2
n =

∑
m 6=n

| 〈ψ0
m | H ′ | ψ0

n〉 |2

(E0
n − E0

m)

• Dirac equation

ih̄
∂ψ

∂t
= [cα · p + βmc2]ψ

where

α =
(

0 σ
σ 0

)
, β =

(
I 0
0 −I

)
and

ψ(r, t) =
(
ψ1(r, t)
ψ2(r, t)

)
and ψ1 and ψ2 are each two component spinors. If we assume a time dependence
ψ(r, t) = ψ(r)e−iEt/h̄, then the Dirac equation becomes

Eψ = [cα · p + βmc2]ψ

• Hydrogen atom

En = − 1

n2

1

2
α2mc2, α =

e2

4πε0h̄c
, a0 =

h̄

αmec
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