Physics 443 Prelim #1 with solutions March 7, 2008

Each problem is worth 34 points.

1. Harmonic Oscillator

Consider the Hamiltonian for a simple harmonic oscillator

$$H = \frac{p^2}{2m} + \frac{1}{2}m\omega^2 x^2$$

(a) Use dimensional analysis to estimate the ground state energy and the characteristic size of the ground state wave function in terms of m, \hbar , and ω . (That is, determine the characteristic length l_0 and energy E_0 .)

[Let $x = l_0 z$ and $E = \epsilon E_0$, where l_0 and E_0 have dimensions of length and energy respectively. Substitution into Schrodinger's equation gives

$$\left(-\frac{\hbar^2}{2ml_0^2}\frac{d^2}{dz^2} + \frac{1}{2}m\omega^2 l_0^2 z^2\right)\psi = \epsilon E_0 \psi$$

Multiply through by $2ml_0^2/\hbar^2$ to get

$$\left(-\frac{d^2}{dz^2} + m^2 \omega^2 \frac{l_0^4}{\hbar^2} z^2\right) \psi = \epsilon \frac{2ml_0^2}{\hbar^2} E_0 \psi$$

Define l_0 so that the coefficient of $z^2\psi$ on the left hand side is 1 and E_0 so that the coefficient of $\epsilon\psi$ on the right hand side is 1. Then

$$l_0 = \sqrt{\frac{\hbar}{m\omega}}$$
 and $E_0 = \frac{1}{2}\hbar\omega$.]

(b) At t=0 a particle in the harmonic oscillator potential has as its wave function an even mixture of the first two stationary states with energies $\frac{1}{2}\hbar\omega$ and $\frac{3}{2}\hbar\omega$.

$$\Psi(x,0) = A[\psi_0(x) + \psi_1(x)]$$

Compute A and find $\Psi(x,t)$ and $|\Psi(x,t)|^2$. Give your answers in terms of ψ_0 and ψ_1 .

[A is the normilzation constant.]

$$\langle \psi \mid \psi \rangle = 1$$

$$= |A|^2 [\langle \psi_0 \mid \psi_0 \rangle + \langle \psi_0 \mid \psi_1 \rangle + \langle \psi_1 \mid \psi_0 \rangle + \langle \psi_1 \mid \psi_1 \rangle]$$

$$= |A|^2 [1 + 0 + 0 + 1]$$

$$\Rightarrow A = \frac{1}{\sqrt{2}}$$

$$\Psi(x,t) = \frac{1}{\sqrt{2}} [\psi_0(x) e^{-iE_0/\hbar t} + \psi_1(x) e^{-iE_1/\hbar t}] = \frac{1}{\sqrt{2}} [\psi_0(x) e^{-i\omega t/2} + \psi_1(x) e^{-3i\omega t/2}]$$
$$|\Psi(x,t)|^2 = \frac{1}{2} [1 + 1 + \psi_0^* \psi_1 e^{-i\omega t} + \psi_1^* \psi_0 e^{\omega t}]$$
$$= [1 + \psi_0^* \psi_1 \cos(\omega t)]$$

(c) Compute $\langle x \rangle$ using $x = \sqrt{\frac{\hbar}{2m\omega}}(a_+ + a_-)$. What is the angular frequency of the oscillation?

The last step follows from the fact that the wave functions ψ_1 and ψ_0 are real and x is an Hermitian operator. Finally

$$\langle \psi_1 \mid x \mid \psi_0 \rangle = \sqrt{\frac{\hbar}{2m\omega}} \langle \psi_1 \mid a_+ + a_- \mid \psi_0 \rangle$$

$$= \sqrt{\frac{\hbar}{2m\omega}} \langle \psi_1 \mid a_+ \mid \psi_0 \rangle$$

$$= \sqrt{\frac{\hbar}{2m\omega}}$$

The last step follows from the third equation for the one dimensional harmonic oscillator on the formula sheet. So

$$\langle x \rangle = \sqrt{\frac{\hbar}{2m\omega}}\cos(\omega t).$$

The angular frequency of the oscillation is ω .]

(d) If you measured the energy of this particle, what values might you get and what is the probability of getting each of them? [A measurement of the energy of the particle would give either $\frac{1}{2}\hbar\omega$ or $\frac{3}{2}\hbar\omega$ with equal likelihood.]

(e) What is the expectation value of H? $[\langle H \rangle = \frac{1}{2} [\langle \psi_0 \mid H \mid \psi_0 \rangle + \langle \psi_1 \mid H \mid \psi_1 \rangle] = \hbar \omega]$

2. **WKB**

Consider the infinite square well with a sloped floor

$$V(x) = \begin{cases} \infty & \text{for } (x < 0), \\ kx & \text{for } (0 < x < a), \\ \infty, & \text{for } (x > a) \end{cases}$$

(a) If the well is narrow (small a) and k is small, the turning points for the ground state will be at x = 0 and x = a. If the well is very broad, the right turning point for the ground state will occur along the floor, at x < a. Assuming that the turning points are at x = 0 and x < a, use the WKB approximation to find the energy of the ground state and the turning point.

[The turning point $x_t = E/k$. The quantization condition for a well with one infinite vertical wall is

$$(n - \frac{1}{4})\pi\hbar = \int_{x_1}^{x_2} p dx$$

$$= \int_0^{x_t} \sqrt{2m(E - kx)} dx$$

$$= \sqrt{2mk} \int_0^{x_t} (\frac{E}{k} - x)^{\frac{1}{2}} dx$$

$$= -\frac{2}{3} \sqrt{2mk} (\frac{E}{k} - x)^{3/2} \Big|_0^{x_t}$$

$$= \frac{2}{3} \sqrt{2mk} (\frac{E}{k})^{3/2}$$

$$\Rightarrow E = \left(\frac{3}{2} \frac{3}{4} \frac{\pi \hbar k}{\sqrt{2m}}\right)^{2/3} \Big]$$

(b) Now assume that the turning points are at x = 0 and x = a and use the WKB approximation to write an expression that determines the energy levels of the system. (You do not need to solve for E_n .) [Now we use the quantization condition for two infinite

vertical walls.

$$\pi\hbar = \int_{x_1}^{x_2} p dx$$

$$= \int_0^a \sqrt{2m(E - kx)} dx$$

$$= \sqrt{2mk} \int_0^{x_t} (\frac{E}{k} - x)^{\frac{1}{2}} dx$$

$$= -\frac{2}{3} \sqrt{2mk} (\frac{E}{k} - x)^{3/2} \Big|_0^a$$

$$\pi\hbar = \frac{2}{3} \sqrt{2mk} \left(\left(\frac{E}{k} \right)^{3/2} - \left(\frac{E}{k} - a \right)^{3/2} \right) \Big]$$

3. Spin 1/2

Suppose that a spin-1/2 particle is in the state

$$\chi = \begin{pmatrix} a \\ b \end{pmatrix}$$
.

where $a = \cos \alpha$ and $b = \sin \alpha$ are real and the state is normalized.

(a) What are the probabilities of getting $+\hbar/2$ and $-\hbar/2$, if you measure S_z and S_x ?

[The probability for getting $+\hbar/2$ if you measure along the z direction is

$$|\chi_+^{\dagger}\chi|^2 = |(1 \quad 0) \begin{pmatrix} a \\ b \end{pmatrix}|^2 = |a|^2$$

and the probability for $-\hbar/2$ is $|b|^2$. The probability for getting $+\hbar/2$ if you measure along the x direction is

$$|\chi_{+}^{(x)^{\dagger}}\chi|^{2} = |\frac{1}{\sqrt{2}}(1 \quad 1)\binom{a}{b}|^{2} = \frac{1}{2}|a+b|^{2}.$$

 $\chi_{\pm}^{(x)}$ are the eigenvectors of S_x with eigenvalues $\pm \frac{1}{2}\hbar$. The probability for $-\hbar/2$ is $\frac{1}{2}|a-b|^2$.]

(b) In a coordinate system rotated by an angle θ about the y-axis so that $z \to z'$ and $x \to x'$, what are the probabilities of getting $+\hbar/2$ and $-\hbar/2$, if you measure $S_{z'}$ and $S_{x'}$?

In the rotated coordinate system

$$\chi' = \begin{pmatrix} \cos(\theta/2) & -\sin(\theta/2) \\ \sin(\theta/2) & \cos(\theta/2) \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a' \\ b' \end{pmatrix} = \begin{pmatrix} a\cos(\theta/2) - b\sin(\theta/2) \\ b\cos(\theta/2) + a\sin(\theta/2) \end{pmatrix}$$

Now the probability of getting $+\hbar/2$ if you measure along the +z' direction is $|a'|^2$ and the probability of getting $-\hbar/2$ is $|b'|^2$. The probability of getting $\pm\hbar/2$ if you measure along the +x' axis is $\frac{1}{2}|a'\pm b'|^2$.

Formulae and Tables

•

$$\begin{split} H\Psi &= i\hbar\frac{\partial\Psi}{\partial t} \\ -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\Psi(x,t) &= i\hbar\frac{\partial}{\partial t}\Psi(x,t) \end{split}$$

• WKB

$$\int_{x_1}^{x_2} p(x)dx = \left(n - \frac{1}{2}\right)\pi\hbar \quad \text{(no infinite vertical walls)}$$

$$\int_{x_1}^{x_2} p(x)dx = \left(n - \frac{1}{4}\right)\pi\hbar \quad \text{(1 infinite vertical wall)}$$

$$\int_{x_1}^{x_2} p(x)dx = n\pi\hbar \quad \text{(2 infinite vertical walls)}$$

$$\psi(x) = \frac{A}{\sqrt{p}} \exp(\frac{i}{\hbar} \int^x p(x')dx') + \frac{B}{\sqrt{p}} \exp(-\frac{i}{\hbar} \int^x p(x')dx')$$

$$\psi(x) = \frac{C}{\sqrt{|p|}} \exp(\frac{1}{\hbar} \int^x |p(x')|dx') + \frac{D}{\sqrt{|p|}} \exp(-\frac{1}{\hbar} \int^x |p(x')|dx')$$

• One dimensional harmonic oscillator

$$H = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2$$

$$a_{\pm} = \frac{1}{\sqrt{2\hbar m\omega}}(\mp i\hat{p} + m\omega\hat{x})$$

$$a_{+}\psi_n = \sqrt{(n+1)}\psi_{n+1}$$

$$a_{-}\psi_n = \sqrt{n}\psi_{n-1}$$

$$[a_{-}, a_{+}] = 1$$

$$H = \hbar\omega(a_{-}a_{+} - \frac{1}{2})$$

$$H\psi_n = \hbar\omega(n + \frac{1}{2})\psi_n$$

$$\psi_0 = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4}e^{-\frac{m\omega}{2\hbar}x^2}, \quad \psi_1 = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4}\sqrt{\frac{2m\omega}{\hbar}}xe^{-\frac{m\omega}{2\hbar}x^2}$$

• Relativisitic energy momentum

$$E = \sqrt{p^2c^2 + (mc^2)^2}$$

• Time dependence of an expectation value

$$\frac{d\langle Q\rangle}{dt} = \frac{i}{\hbar}\langle [H,Q]\rangle + \langle \frac{\partial Q}{\partial t}\rangle$$

• Three dimensional infinite cubical well

$$\psi_{n_x,n_y,n_z}(x,y,z) = \left(\frac{2}{a}\right)^{3/2} \sin\left(\frac{n_x \pi}{a}x\right) \sin\left(\frac{n_y \pi}{a}y\right) \sin\left(\frac{n_z \pi}{a}z\right)$$
$$E_{n_x,n_y,n_z}^0 = \frac{\pi^2 \hbar^2}{2ma^2} (n_x^2 + n_y^2 + n_z^2)$$

• Spin 1/2

$$S_{x} = \frac{\hbar}{2}\sigma_{x} = \frac{\hbar}{2}\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}, \quad S_{y} = \frac{\hbar}{2}\sigma_{y} = \frac{\hbar}{2}\begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix}, \quad S_{z} = \frac{\hbar}{2}\sigma_{z} = \frac{\hbar}{2}\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$$

$$\begin{pmatrix} \left\langle \frac{1}{2}, \frac{1}{2}(z') \mid R_{y}(\theta) \mid \frac{1}{2}, \frac{1}{2}(z) \right\rangle & \left\langle \frac{1}{2}, \frac{1}{2}(z') \mid R_{y}(\theta) \mid \frac{1}{2}, -\frac{1}{2}(z) \right\rangle \\ \left\langle \frac{1}{2}, -\frac{1}{2}(z') \mid R_{y}(\theta) \mid \frac{1}{2}, \frac{1}{2}(z) \right\rangle & \left\langle \frac{1}{2}, -\frac{1}{2}(z') \mid R_{y}(\theta) \mid \frac{1}{2}, -\frac{1}{2}(z) \right\rangle \end{pmatrix} = \begin{pmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix}$$

• Virial Theorem

For stationary states

$$2\langle T\rangle = \langle \mathbf{r} \cdot \nabla V\rangle$$

• Generators

$$e^{i(\sigma \cdot \hat{n})\phi/2} = \cos(\phi/2) + i(\hat{n} \cdot \sigma)\sin(\phi/2)$$

• Boundary conditions for $V(x) = \alpha \delta(x)$

$$\psi(x)$$
 continuous,

$$\Delta\left(\frac{d\psi}{dx}\right) = \frac{2m\alpha}{\hbar^2}\psi(0)$$