
Physics 443 Prelim #1 with solutions
March 7, 2008

Each problem is worth 34 points.

1. Harmonic Oscillator
Consider the Hamiltonian for a simple harmonic oscillator

H =
p2

2m
+

1

2
mω2x2

(a) Use dimensional analysis to estimate the ground state energy and
the characteristic size of the ground state wave function in terms
of m, h̄,and ω. (That is, determine the characteristic length l0 and
energy E0.)

[Let x = l0z and E = εE0, where l0 and E0 have dimensions of
length and energy respectively. Substitution into Schrodinger’s
equation gives(

− h̄2

2ml20

d2

dz2
+

1

2
mω2l20z

2

)
ψ = εE0ψ

Multiply through by 2ml20/h̄
2 to get(

− d2

dz2
+m2ω2 l

4
0

h̄2 z
2

)
ψ = ε

2ml20
h̄2 E0ψ

Define l0 so that the coefficient of z2ψ on the left hand side is 1
and E0 so that the coefficient of εψ on the right hand side is 1.
Then

l0 =

√
h̄

mω
and E0 =

1

2
h̄ω.]

(b) At t = 0 a particle in the harmonic oscillator potential has as its
wave function an even mixture of the first two stationary states
with energies 1

2
h̄ω and 3

2
h̄ω.

Ψ(x, 0) = A[ψ0(x) + ψ1(x)]

Compute A and find Ψ(x, t) and |Ψ(x, t)|2. Give your answers in
terms of ψ0 and ψ1.

[A is the normilzation constant.

〈ψ | ψ〉 = 1

= |A|2[〈ψ0 | ψ0〉+ 〈ψ0 | ψ1〉+ 〈ψ1 | ψ0〉+ 〈ψ1 | ψ1〉|
= |A|2[1 + 0 + 0 + 1]

⇒ A =
1√
2
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Ψ(x, t) =
1√
2

[ψ0(x)e−iE0/h̄t+ψ1(x)e−iE1/h̄t] =
1√
2

[ψ0(x)e−iωt/2+ψ1(x)e−3iωt/2]

|Ψ(x, t)|2 =
1

2
[1 + 1 + ψ∗0ψ1e

−iωt + ψ∗1ψ0e
ωt]

= [1 + ψ∗0ψ1 cos(ωt)]

(c) Compute 〈x〉 using x =
√

h̄
2mω

(a+ + a−). What is the angular
frequency of the oscillation?

[〈x〉 = 〈ψ | x | ψ〉

=
1

2

(
〈ψ0 | x | ψ0〉+ 〈ψ1 | x | ψ1〉+ 〈ψ1 | x | ψ0〉 eiωt + 〈ψ0 | x | ψ1〉 e−iωt

)
=

1

2

(
〈ψ1 | x | ψ0〉 eiωt + 〈ψ0 | x | ψ1〉 e−iωt

)
= (〈ψ1 | x | ψ0〉 cos(ωt))

The last step follows from the fact that the wave functions ψ1 and
ψ0 are real and x is an Hermitian operator. Finally

〈ψ1 | x | ψ0〉 =

√
h̄

2mω
〈ψ1 | a+ + a− | ψ0〉

=

√
h̄

2mω
〈ψ1 | a+ | ψ0〉

=

√
h̄

2mω

The last step follows from the third equation for the one dimen-
sional harmonic oscillator on the formula sheet. So

〈x〉 =

√
h̄

2mω
cos(ωt).

The angular frequency of the oscillation is ω.]

(d) If you measured the energy of this particle, what values might you
get and what is the probability of getting each of them?

[A measurement of the energy of the particle would give either
1
2
h̄ω or 3

2
h̄ω with equal likelihood.]
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(e) What is the expectation value of H?

[〈H〉 = 1
2
[〈ψ0 | H | ψ0〉+ 〈ψ1 | H | ψ1〉] = h̄ω]

2. WKB

Consider the infinite square well with a sloped floor

V (x) =



∞ for (x < 0),

kx for (0 < x < a),

∞, for (x > a)

(a) If the well is narrow (small a) and k is small, the turning points
for the ground state will be at x = 0 and x = a. If the well is
very broad, the right turning point for the ground state will occur
along the floor, at x < a. Assuming that the turning points are at
x = 0 and x < a, use the WKB approximation to find the energy
of the ground state and the turning point.

[The turning point xt = E/k. The quantization condition for a
well with one infinite vertical wall is

(n− 1

4
)πh̄ =

∫ x2

x1

pdx

=
∫ xt

0

√
2m(E − kx)dx

=
√

2mk
∫ xt

0
(
E

k
− x)

1
2dx

= −2

3

√
2mk(

E

k
− x)3/2 |xt

0

=
2

3

√
2mk(

E

k
)3/2

⇒ E =

(
3

2

3

4

πh̄k√
2m

)2/3

]

(b) Now assume that the turning points are at x = 0 and x = a and
use the WKB approximation to write an expression that deter-
mines the energy levels of the system. (You do not need to solve
for En.) [Now we use the quantization condition for two infinite
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vertical walls.

πh̄ =
∫ x2

x1

pdx

=
∫ a

0

√
2m(E − kx)dx

=
√

2mk
∫ xt

0
(
E

k
− x)

1
2dx

= −2

3

√
2mk(

E

k
− x)3/2 |a0

πh̄ =
2

3

√
2mk

((
E

k

)3/2

−
(
E

k
− a

)3/2
)

]

3. Spin 1/2

Suppose that a spin-1/2 particle is in the state

χ =
(
a
b

)
.

where a = cosα and b = sinα are real and the state is normalized.

(a) What are the probabilities of getting +h̄/2 and −h̄/2, if you mea-
sure Sz and Sx?

[The probability for getting +h̄/2 if you measure along the z di-
rection is

|χ†+χ|2 = | ( 1 0 )
(
a
b

)
|2 = |a|2

and the probability for −h̄/2 is |b|2. The probability for getting
+h̄/2 if you measure along the x direction is

|χ(x)
+

†
χ|2 = | 1√

2
( 1 1 )

(
a
b

)
|2 =

1

2
|a+ b|2.

χ
(x)
± are the eigenvectors of Sx with eigenvalues ±1

2
h̄. The proba-

bility for −h̄/2 is 1
2
|a− b|2.]

(b) In a coordinate system rotated by an angle θ about the y-axis so
that z → z′ and x→ x′, what are the the probabilities of getting
+h̄/2 and −h̄/2, if you measure Sz′ and Sx′?
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[In the rotated coordinate system

χ′ =
(

cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)(
a
b

)
=
(
a′

b′

)
=
(
a cos(θ/2)− b sin(θ/2)
b cos(θ/2) + a sin(θ/2)

)

Now the probability of getting +h̄/2 if you measure along the +z′

direction is |a′|2 and the probability of getting −h̄/2 is |b′|2. The
probability of getting ±h̄/2 if you measure along the +x′ axis is
1
2
|a′ ± b′|2.
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Formulae and Tables

•

HΨ = ih̄
∂Ψ

∂t

− h̄2

2m

∂2

∂x2
Ψ(x, t) = ih̄

∂

∂t
Ψ(x, t)

• WKB ∫ x2

x1

p(x)dx =
(
n− 1

2

)
πh̄ (no infinite vertical walls)

∫ x2

x1

p(x)dx =
(
n− 1

4

)
πh̄ (1 infinite vertical wall)∫ x2

x1

p(x)dx = nπh̄ (2 infinite vertical walls)

ψ(x) =
A
√
p

exp(
i

h̄

∫ x

p(x′)dx′) +
B
√
p

exp(− i
h̄

∫ x

p(x′)dx′)

ψ(x) =
C√
|p|

exp(
1

h̄

∫ x

|p(x′)|dx′) +
D√
|p|

exp(−1

h̄

∫ x

|p(x′)|dx′)

• One dimensional harmonic oscillator

H =
p̂2

2m
+

1

2
mω2x̂2

a± =
1√

2h̄mω
(∓ip̂+mωx̂)

a+ψn =
√

(n+ 1)ψn+1

a−ψn =
√
nψn−1

[a−, a+] = 1

H = h̄ω(a−a+ −
1

2
)

Hψn = h̄ω(n+
1

2
)ψn

ψ0 =
(
mω

πh̄

)1/4

e−
mω
2h̄
x2

, ψ1 =
(
mω

πh̄

)1/4
√

2mω

h̄
xe−

mω
2h̄
x2
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• Relativisitic energy momentum

E =
√
p2c2 + (mc2)2

• Time dependence of an expectation value

d〈Q〉
dt

=
i

h̄
〈[H,Q]〉+ 〈∂Q

∂t
〉

• Three dimensional infinite cubical well

ψnx,ny ,nz(x, y, z) =
(

2

a

)3/2

sin
(
nxπ

a
x
)

sin
(
nyπ

a
y
)

sin
(
nzπ

a
z
)

E0
nx,ny ,nz

=
π2h̄2

2ma2
(n2

x + n2
y + n2

z)

• Spin 1/2

Sx =
h̄

2
σx =

h̄

2

(
0 1
1 0

)
, Sy =

h̄

2
σy =

h̄

2

(
0 −i
i 0

)
, Sz =

h̄

2
σz =

h̄

2

(
1 0
0 −1

)
 〈

1
2
, 1

2
(z′) | Ry(θ) | 1

2
, 1

2
(z)
〉 〈

1
2
, 1

2
(z′) | Ry(θ) | 1

2
,−1

2
(z)
〉

〈
1
2
,−1

2
(z′) | Ry(θ) | 1

2
, 1

2
(z)
〉 〈

1
2
,−1

2
(z′) | Ry(θ) | 1

2
,−1

2
(z)
〉 =

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)

• Virial Theorem

For stationary states
2〈T 〉 = 〈r · ∇V 〉

• Generators
ei(σ·n̂)φ/2 = cos(φ/2) + i(n̂ · σ) sin(φ/2)

• Boundary conditions for V (x) = αδ(x)

ψ(x) continuous,

∆
(
dψ
dx

)
= 2mα

h̄2 ψ(0)
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