Physics 443, Solutions to PS 11

1. Griffiths 1.9

For ®(z,t) = AeXp[—a(”"‘T""’2 +it)], we need that [2°|®(x,t)[2dw = 1.
Using the known result of a Gaussian intergral [*2°exp[—ax?|dz =

\/7/a, we find that:
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The Schrédinger Equation is given by H® = ih %2, with H = (—h2/2m)%+
V(z). Plugging our Wavefunction into this Equation, we find:
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V(z) = 2ma*z’. (2)

Being odd functions, () and (p) are zero. And using [*2° 2% exp[—az?]dx

0.5y/m /a3, we have:
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2. Griffiths 1.16
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We use Schrodinger’s equation and its complex conjugate to replace the
time derivatives with space derivatives and the potential V(z). V(x)
is assumed real and independent of time.
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Integrate by parts and use the fact that normalizable wave functions
are zero at infinity to drop the total derivative. Then
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3. Griffiths 2.5

(a) We have that ¥(z,0) = Ay (x)+12(x)]. We know that the states
Up(x) = \/% sin k,z, with k, = n7/L are normalized, orthogonal
and real. Then
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¥(@.1) = 5 (la)e =+ pa(w)e) (5)
where w,, = % Then
WP = @ + () + 261 va(a) cos(Awt)
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= 7 [sinQ(k‘lx) + sin®(kox) + 2 sin(kyz) sin(kyx) cos Awt}

where Aw = w; — wy
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We got the first two terms in the integration by inspection since
sin? kx is symmetric about the midpoint of the well. We find the
integral of the third term in a table. It is appended at the end of
this solution set. The amplitude of the oscillation is
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(e) An energy measurement would yield either E; or Es. The proba-

bility of measuring E; is equivalent to the probablity that ¥ is in
the state 1)1, namely
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4. Griffiths 2.21

(a) To normalize the wave function set

/ U (z,0)[? dx = 1
where

T(z,0) = Ae~alel
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Then
[ 0P dr =1,

(b) The momentum distribution
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which looks like %5 () at t = 0 and will spread out in time due
to the k dependence of w. In the limit a — 0,
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Small k, (long wavelenghts) will dominate the distribution at ¢ =
0.

5. Griffiths 2.22
We have

U(z,0) = W exp(—az?).

The way to solve this problem is take the Fourier transform ¢(k), since
we know how to time evolve ¢(k) for a free particle. In particular, we
have the following relations
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Putting these two equations together, one can solve for ¥(z,t) as
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This looks like a mess, but it is really just two integrals of the form
given in the hint. Performing the integral over dy first, and then dk,
we have
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Using the definition of w = \/a/[l + (2hat/m)?|, we can rewrite our

answer as
2
B
m

For large t, we have that w is inversely proportional to time, so the wave-
function is of the same form but with its rms spread proportional to ¢.
We can also notice that when written in this form, that (z), (p) = 0.
For (z?), we integrate directly and find 1/4w?. (p?) involves integration
by parts as follows
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We see that 0,0, = hy/a/(2w), which when ¢ — 0,w — +/a, and
0,0y = /2.

. Current Vector
Find the current density carried by a plane wave Ae*? in one dimension,
showing that it is in fact what one would expect from the formula pv,

and verify that it satisfies the equation of continuity.
[For ¢ = Aexp(ikx), We know that the current density is
ih o* LOY
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Therefore, j = (hk/m)(A?) = (v)(p). The continuity equation d;p =
—V.j is trivially satisfied.]



7. Commutators

Prove the following:

where a is a constant number.

[Using the definition that [A, B] = AB — BA, it is straight forward to
show these relations. We just do one of them here.

[AB,C] = ABC — CAB = ABC + (—ACB + ACB) + (—ACB + ACB) — CAB
— A[B,C]+ (ACB — ACB) + [A,C)B
= A[B,C] + [Aa C]B 0 (8)

8. Sum Rule

(a) Consider the commutator [H, z]
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= 5 (plp, x] + [p, x]p) (where we have used the result of problem 7.)
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In going from Equation 9 to 10 we use the fact the | 1,/) is a
complete set.

Integrals
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