Physics 443, Solutions to PS 2

1. Griffiths 2.12.

The raising and lowering operators are
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where p and & are momentum and position operators. Then
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The expectation value of the position operator is
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Similarly, the expectation value of the momentum operator is
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Expectation values of 2% and p? are not zero.
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where we have used the relationship between Hamiltonian operator and
a4, namely
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We have that
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and then



The kinetic energy

. Griffiths 2.14.

The wave function is initially in the ground state of the oscillator with
classical frequency w. The wave function is
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The spring constant changes instantaneously but the wav function does
not. So immediately after the change in spring constant the wave func-
tion remains the same. But it is no longer an eigenfunction of the
hamiltonian operator. However, any function can be expressed as a
linear combination of the new eigenfunctions, 1/, and we can write
that
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The probability that we will find the oscillator in the n* state, with
energy FE! is |a,|?. After the change, the minimum energy state is
E} = ihw' = hw, (since w’ = 2w) so the probablity that a measure-
ment of the energy would still return the value hw/2 is zero. Since the
eigenfunctions are orthonormal ([ /¢! dx = d,,) we can determine
the coefficients
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The probability of measuring energy E| = hw'/2 = hw is the proba-
bility that the oscillator is in the state 1. The probability that the
oscillator is in the ground state is

lag|* = 0.943
3. Griffiths 2.26.

Using the definition of the Fourier transform, we have
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We therefore have that
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4. Griffiths 2.38.

(a) We write the wave function v, which is the ground state wave
function for the well of width @ as a linear combination of the
eigenfunction, (¢¥2rime) of the well of width 2a.
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We only integrate from 0 to a because 1 (x) is zero for x < 0 and

x > a. Then
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If n =2, the f;/?sin? 2ydy = % and ap = g, and the probability
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abilities for any energy is 1, no other can be more probable than
(b) For all other even n, a, = 0. For n odd
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and |a;|* = 0.36 The next most probable result is E} with proba-
bility 0.36.
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7. Time dependence.

Show that if Q is an operator that does not involve time explicitly, and
if ¢ is any eigenfunction of H, that the expectation value of ) in the
state of ¢ is independent of time.



[We start with the Griffith’s Equation 3.148
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Where the last term is zero because () has no explicit time dependence,
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8. Collapse of the wave function.

Consider a particle in the infinite square well potential from problem
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[The time independent Schrodinger’s equation for a particle in an
infinite square well is

Show that the stationary states are ¢, (x)

energy spectrum is E,, =
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Substitution of the proposed solution () gives
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Suppose we now make a measurement that locates a particle ini-
tially in state v, (x) so that it is now in the position a/2 — €/2 <
r < a/2 + ¢/2 and described by the state o. In the limit where
€ < a, the result of the measurement projects the system onto a
superposition of eigenstates of energy. The probability of finding



the particle in any eigenstate is P(E,) = [(¢,, | a)|?>. A reason-
able estimate of the state | a) is ¥,(x) = /ed*(x — a/2) where
6 (z—a/2) =1/efora/2—€/2 <z < af2+€/2and §(z—2) =0
everywhere else. Calculate the probability P(E,).

[ Any solution to (the time dependent) Schrodinger’s equation can
be written as a linear combination of energy eigenstates. (The
energy eigenstates form a complete set.) So we can write
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The probability of finding the particle in the n'® energy eigenstate
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As e shrinks, and the particle is more localized, the probability
that it will be found in a higher energy state increases. In the
limit € < a,
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the particle is equally likely to be found in all n odd states.]



