
Physics 443, Solutions to PS 2

1. Griffiths 2.12.

The raising and lowering operators are

a± =
1√

2mωh̄
(∓ip̂+mωx̂)

where p̂ and x̂ are momentum and position operators. Then

x̂ =

√
h̄

2mω
(a+ + a−)

p̂ = i

√
mωh̄

2
(a+ − a−)

The expectation value of the position operator is

〈x〉 = 〈ψn | x̂ | ψn〉

=

〈
ψn |

√
h̄

2mω
(a+ + a−) | ψn

〉

=

√
h̄

2mω
(〈ψn | (a+) | ψn〉+ 〈ψn | (a−) | ψn〉)

=

√
h̄

2mω

(√
n〈ψn | ψn+1〉+

√
n− 1〈ψn | ψn−1〉

)
= 0

Similarly, the expectation value of the momentum operator is

〈p〉 = 〈ψn | p̂ | ψn〉

=

〈
ψn | i

√
mωh̄

2
(a+ − a−) | ψn

〉
= 0

Expectation values of x2 and p2 are not zero.

〈x2〉 =
〈
ψn | x̂2 | ψn

〉
=

〈
ψn |

h̄

2mω
(a2

+ + a2
− + a+a− + a−a+) | ψn

〉

=
h̄

2mω
〈ψn | (a+a− + a−a+) | ψn〉

1



=
h̄

2mω

〈
ψn |

2

h̄ω
H | ψn

〉
=

h̄

2mω

〈
ψn |

2

h̄ω
(n+

1

2
)h̄ω | ψn

〉
=

h̄

2mω
(2n+ 1)

where we have used the relationship between Hamiltonian operator and
a±, namely

H = h̄ω(a+a− +
1

2
)

H = h̄ω(a−a+ −
1

2
)

Then

〈p2〉 =
〈
ψn | p̂2 | ψn

〉
=

〈
ψn |

mωh̄

2
(−a2

+ − a2
− + a+a− + a−a+) | ψn

〉

=
mωh̄

2
〈ψn | (a+a− + a−a+) | ψn〉

=
mωh̄

2

〈
ψn |

2

h̄ω
H | ψn

〉
=

mωh̄

2
(2n+ 1)〈ψn | ψn〉

=
mωh̄

2
(2n+ 1)

We have that

σx =
√
〈(x− 〈x〉)〉 =

√
〈x2〉 =

√
h̄

2mω
(2n+ 1)

σp =
√
〈(p− 〈p〉)〉 =

√
〈p2〉 =

√
mωh̄

2
(2n+ 1)

and then

σxσp = (2n+ 1)
h̄

2

2



The kinetic energy

〈T 〉 =
〈p2〉
2m

=
h̄ω

4
(2n+ 1)

2. Griffiths 2.14.

The wave function is initially in the ground state of the oscillator with
classical frequency ω. The wave function is

ψ0(x) =
(
mω

πh̄

) 1
4

e−
mω
2h̄
x2

The spring constant changes instantaneously but the wav function does
not. So immediately after the change in spring constant the wave func-
tion remains the same. But it is no longer an eigenfunction of the
hamiltonian operator. However, any function can be expressed as a
linear combination of the new eigenfunctions, ψ′n and we can write
that

ψ0(x) =
n=∞∑
n=0

anψ
′
n(x)

The probability that we will find the oscillator in the nth state, with
energy E ′n is |an|2. After the change, the minimum energy state is
E ′0 = 1

2
h̄ω′ = h̄ω, (since ω′ = 2ω) so the probablity that a measure-

ment of the energy would still return the value h̄ω/2 is zero. Since the
eigenfunctions are orthonormal (

∫
ψ′nψ

′
mdx = δnm) we can determine

the coefficients

an =
∫ ∞
−∞

ψ′n(x)ψ0(x)dx

a0 =
∫ ∞
−∞

(
mω′

πh̄

) 1
4

e−
mω′
2h̄

x2
(
mω

πh̄

) 1
4

e−
mω
2h̄
x2

dx

=

(
mω′

πh̄

) 1
4 (mω

πh̄

) 1
4
∫ ∞
−∞

e−( mω′
2h̄

+ mω
2h̄

)x2

dx

=

(√
2mω

πh̄

) 1
2 ∫ ∞
−∞

e−( 3mω
2h̄

)x2

dx

=

(√
2mω

πh̄

) 1
2
(

2πh̄

3mω

) 1
2
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=

(
2
√

2

3

) 1
2

= 0.971

The probability of measuring energy E ′0 = h̄ω′/2 = h̄ω is the proba-
bility that the oscillator is in the state ψ′0. The probability that the
oscillator is in the ground state is

|a0|2 = 0.943

3. Griffiths 2.26.

Using the definition of the Fourier transform, we have

Answer =
1√
2π

∫ ∞
−∞

dx δ(x) exp(−ikx),

=
1√
2π
e−ikx|x=0,

=
1√
2π
.

We therefore have that

δ(x) =
1√
2π

∫ ∞
−∞

1√
2π

exp(ikx) dk,

=
1

2π

∫ ∞
−∞

dk eikx. (1)

4. Griffiths 2.38.

(a) We write the wave function ψ1, which is the ground state wave
function for the well of width a as a linear combination of the
eigenfunction, (ψpnrime) of the well of width 2a.

ψ1 =
∞∑
n=1

anψ
′
n

Solve for the coefficients

an =
∫ 2a

0
(ψ′n)∗ψ1dx

=
∫ a

0

√
2

2a
sin

nπx

2a

√
2

a
sin

πx

a
dx
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We only integrate from 0 to a because ψ1(x) is zero for x < 0 and
x > a. Then

an =

√
2

a

∫ π/2

0
(sinny)(sin 2y)

(
2a

π

)
dy

=
2
√

2

π

[
sin(2− n)y

2(2− n)
− sin(2 + n)y

2(2 + n)

]π/2
0

(n 6= 2)

If n = 2, the
∫ π/2

0 sin2 2ydy = π
4

and a2 =
√

2
2
, and the probability

to measure E ′2 = h̄2

2m

(
π
2a

)2
, is |a2|2 = 1

2
. Since the sum of prob-

abilities for any energy is 1, no other can be more probable than
E ′2.

(b) For all other even n, an = 0. For n odd

an =
2
√

2

2π

[
sin(nπ/2)

(2− n)
+

sin(nπ/2)

(2 + n)

]

=
4
√

2

π

sin(nπ/2)

(4− n2)

Then

|an|2 =
32

π2(4− n2)2

and |a1|2 = 0.36 The next most probable result is E ′1 with proba-
bility 0.36.

(c)

〈H〉 =
∫ a

0
ψ∗1Hψ1dx

=
h̄2π2

2ma2

7. Time dependence.

Show that if Q̂ is an operator that does not involve time explicitly, and
if ψ is any eigenfunction of Ĥ, that the expectation value of Q̂ in the
state of ψ is independent of time.
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[We start with the Griffith’s Equation 3.148

d

dt
〈Q〉 =

i

h̄
〈[H,Q]〉+ 〈dQ

dt
〉,

Where the last term is zero because Q has no explicit time dependence,

d

dt
〈Q〉 =

i

h̄
〈ψ|HQ−QH|ψ〉,

= εψ〈ψ|(Q−Q)ψ〉 using ψ is stationary,

= 0 (2)

8. Collapse of the wave function.

Consider a particle in the infinite square well potential from problem
4.

(a) Show that the stationary states are ψn(x) =
√

2
a

sin
(
nπx
a

)
and the

energy spectrum is En = n2π2h̄2

2ma2 where the width of the box is a.

[The time independent Schrodinger’s equation for a particle in an
infinite square well is

− h̄2

2m

d2ψ

dx2
= Eψ

Substitution of the proposed solution ψn(x) gives

− h̄2

2m

d2

dx2

√
2

a
sin

(
nπx

a

)
= E

√
2

a
sin

(
nπx

a

)
h̄2

2m

(
nπ

a

)2
√

2

a
sin

(
nπx

a

)
= E

√
2

a
sin

(
nπx

a

)

→ En =
h̄2

2m

(
nπ

a

)2

]

(b) Suppose we now make a measurement that locates a particle ini-
tially in state ψn(x) so that it is now in the position a/2− ε/2 ≤
x ≤ a/2 + ε/2 and described by the state α. In the limit where
ε � a, the result of the measurement projects the system onto a
superposition of eigenstates of energy. The probability of finding
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the particle in any eigenstate is P (En) = |〈ψn | α〉|2. A reason-
able estimate of the state | α〉 is ψα(x) =

√
εδε(x − a/2) where

δ(ε)(x−a/2) = 1/ε for a/2−ε/2 ≤ x ≤ a/2+ε/2 and δε(x− a
2
) = 0

everywhere else. Calculate the probability P (En).

[ Any solution to (the time dependent) Schrodinger’s equation can
be written as a linear combination of energy eigenstates. (The
energy eigenstates form a complete set.) So we can write

ψα(x) =
∞∑
n

cnψn

→ cn =
∫ ∞
−∞

ψα(x)ψn(x)∗dx

=
∫ a/2+ε/2

a/2−ε/2

(
1√
ε

)
ψn(x)∗dx

= −
√

2

εa

a

nπ

[
cos

nπx

a

]a/2+ε/2

a/2−ε/2

= −
√

2

εa

a

nπ

[
cos(

nπ

2
+
nπε

2a
)− cos(

nπ

2
− nπε

2a
)
]

= 2

√
2

εa

a

nπ

[
sin(

nπ

2
) sin(

nπε

2a
)
]

=

{
(−1)(n−1)/2( 2

nπ
)
√

2a
ε

sin(nπε
2a

), if n is odd,

0, if n is even.

The probability of finding the particle in the nth energy eigenstate
is

P (En) = |cn|2 =

{
( 2
nπ

)2 2a
ε

sin2(nπε
2a

), if n is odd,
0, if n is even.

(3)

As ε shrinks, and the particle is more localized, the probability
that it will be found in a higher energy state increases. In the
limit ε� a,

P (En)→
{

2ε
a
, if n is odd,

0, if n is even.
(4)

the particle is equally likely to be found in all n odd states.]
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