Physics 443, Solutions to PS 3!

1. Griffiths 3.23. It is easiest to first write the hamiltonian matrix. By

inspection
1 1
H=¢ ( 1 _1>

We find the eigenvalues \ by setting
det(H—MX)=0
Then Ay = +ev/2. Let

be an eigenvector. Then

Hﬁi = )\iﬁi

Or in the | ) representation
[os) = 1) + (-1 £v2)]2)

2. Griffiths 3.24.

Since the set of orthonormal vectors | e,) is complete, any state can be
written as a linear combination of those vectors. In paricular, the state
| @) can be written as

| o) =D aml em) (1)

Then
(en | ) = Zam<en | em) = Zam5mn =a, (2)

where we have used the orhthonormality of the eigenvectors. Finally
substitute (e, | &) = a, from Equation 3 into Equation 2.

[a) =3 len){en|a) (3)
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So
Q| a> = ZQ| 6n><€n | a)
= ZQn| en)(en | @)
- (Saledtenl)la)
. Griffiths 3.3. We are given that <h Q| h> = <Qh | h> for all states

| h). If we define | h) = | f) +] ¢) then

(F1Q1A)+(F1Q1a)+{91Q1F)+(a1Q]4g)
=(QF 1 £)+(Qf 19)+(Qa | £)+(Qg19) (4)

By hypothesis < fl Q | f > = <Q flf > and similarly for | g) so Equation
3 reduces to

(F1Q1g)+{(g1Q1f)=(Qf 1 9)+(Qg|f) (5)
Alternatively, if we let | h) = | f) +i| g) we find that

i(f1Qlg)—i(glQIf)=i(Qf | g)—i(Qq| f) (6)

(F1Qlg)—(glQ|f)={(Qf lg)—(Qg|f) (7)

The sum of equations (4) and (6) gives <f 1Q | g> = <Qg | f> and the
difference gives <g ] Q | f> = <Qg ] f>

4. Griffiths 3.31. We have:

L) = L4 V(a), ),



For a stationary state, we see that 2(T) = (x0, V'), which is the Virial
Theorem. For the Harmonic Oscillator V(z) = mw?z?/2, using the
Virial Theorem, we see that (T') = (mw?z?/2) = (V(z)).

5. Griffiths 3.33. We begin by using that

1
ay = ——(P E£imwzx),
= = ol )
P = %(aJr—i_a*)a
—1
v = ———(a; —a),
2mw

arln—1) = ivnhw|n),
a_|ln) = —iVnhwln —1),

—1

(nzn’y = mw(<n|@+ —a-|n')),
(B riV W — Syt (—iV W),

2mw
h
== 7(5n’,n—1\/ﬁ + 5n,n/—1\/ﬁ)a
2mw
/ m /
b} =\ ((olas +a ),
= 1 T(én’,n—l\/ﬁ_én,n’—l\/ﬁ)-

We can then write these out in matrix notation as

0 v2 0 0
V2 0 V3 0
PR L IV SO
2mw 0 0 \/Z 0
0 —/2 0 0o ..
V2o 0 —=v3 0 ..
0 4 0 .



And you can verify that p?/2m+ (mw?/2)z? is diagonal with the matrix
element given by hw(n + 1/2).

6. Griffiths 3.38.

(a)

By inspection the eignenvalues of H are F; = hw, £y = F3 = 2hw
and the eigenvectors are

(5) (i) (0

To find the eigenvalues,y, we set
v
det(A—~I) = |A v
0 0

= YA —79) = N2 —9)=0

Then the normalized eigenvalues of A are A} = \, Ay = =\, A3z =
2\ and the eigenvectors are

1 1 1 1 0
al:ﬁ (1) , agzﬁ —01 , a3 = (i)

The same strategy gives the eigenvalues B are By = 2u, By =
i, B3 = —p and the eigenvectors are

1 1 0 1 0
)l sl

(H) = (S[HIS)
1 0 O
= hw(cep ¢ ¢3)|0 2 0
0 0 2

= hw(ler” +2(leaf” + [es]*)
= hw(2—|af)
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01 0 C1
<A> = )\(Cl Co Cg) 1 0 0 (6))
0 0 2 Cs3

= Acjea + cer + 2|es])
2 0 0 C1
(B) = p(cn ¢ e3)(0 0 1 o
0 1 0 C3

= p(2lei)® + cies + cieo)

|S<>>_Cezwt+0621wt+ceszt

The probability of measuring energies Ey, Ey and Es is |c1|?, |2/,
and |c3|? respectively independent of time. The probability of
measuring A; is [(a; | S(t))[?

C1

1 . ,
|<a'1 ‘ S(t)>|2 = ‘ (1 1 0) Co |2 — *|C1€71wt + 02672’Lwt|2
\/_ 2
C
“ 1 |
|<CL2 ‘ S(t)>|2 = ‘ ( -1 0 Co |2 = 7|01€*th _ 62672zwt‘2
\/_ 9
C3

[{as [ S@)I* = [(0 0 1) )2 les|”

The probability of measuring B; is |{b; | S(t

(b | S = [(1 0 0) )I2 *|01!2
1 1 —2iw —2iw
(b2 | S = !E(O 1 ( = Sleae™ - cgem P =
1 1 —2iw — 2w
[(bs | S = !E(O 1 -1) Cz [ = gleae ™ —cgeT P =

C3

1
§|02+Cg‘2

1 2
5102—03’



7. Charmonium. The Schrodinger equation for charmonium is

h2
—— V% + arp = Ey
2m

Define u(r) = 7 and for spherically syymetric wave functions, the
Schrodinger equation reduces to
n d*u
————— taru= FEu
2m dr?
Let r = lpz and E = eFy where z and € are dimensionless and the
Schrodinger equation becomes

h? d*u
————— + alpzu = eEyu
2ml3 dz? ot o
or
d*u 2ml§l 2ml2
———ta—lpzu=c¢ u
dz? n n?
1/3 1/3
Set [y = (2)2;) / and Fy = % = (h;;:f) / and our differential
equation looks like
d’*u n
——— 4 zu=¢€u
dz?
Now let y = 2 — € and we have Airy’s equation
d*u
—— t+yu=20
dy? 4

Since u(r) = ¢(r)/r,then it must be that u(0) = 0 so that (0) is
finite. Therefore u(z — €) = u(—¢) = 0. The energy eigenvalues, € are
the zeros of the Airy function a;. The first two zeros are 2.3 and 4.1 so
El = 23E0 and Eg = 41E()

We have that

mysc* = 2m.c® + F,
MosC® = 2m.c + Fy (10)

where m, is the charmed quark mass and FE; and F5 are the bind-
ing energies. The difference of the two equations yields Ey = (mos —
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mys)c?/1.8 = 0.325GeV. We find m.c* = 1.176GeV. Finally the re-
duced mass m = m./2. Meanwhile,

2 9\ 1/3
B, = (h o )
2m
2mE}  m.?E}  (1176GeV)(0.325GeV)?
2 KA (197GeV — fm)?

= q = = 1.02GeV/fm

And

L (AN 0a91Gey — )2\ 318 /m
7 \m.ca ~ \(L.176GeV)(1.02GeV/ fm) - '

. Rotations. We define x = iL,60/h. Notice that
B 0 0 1

T -1 0
0\ 3

3 _

o () (—1 )
7

2 — —

S G)

R(#) =¢* = 1+x+$—+—+...,

R (030

In particular

You can see that L} = L, and R(0)"R() = 1, making L, Hermitian
and R(6) unitary.



