
Physics 443, Solutions to PS 4
1. Neutrino Oscillations

(a) Energy eigenvalues and eigenvectors

The eigenvalues of H are E1 = E0 +A, and E2 = E0 −A and the
eigenvectors are

~ν1 =
1√
2

(
1
1

)
, ~ν2 =

1√
2

(
1
−1

)
And

〈ν1 | ν2〉 =
1√
2

( 1 1 )
1√
2

(
1
−1

)
= 0

(b) Similarity transformation

S =
1√
2

(
1 1
1 −1

)

S| νe〉 =
1√
2

(
1 1
1 −1

)(
1
0

)
=

1√
2

(
1
1

)
S| νµ〉 =

1√
2

(
1
−1

)
(c)

| ψ(t)〉 = a′| ν1〉e−
i
h̄
E1t + b′| ν2〉e−

i
h̄
E2t

(d) Time evolution

At t = 0

〈νe | ψ〉 = 1⇒ a′〈νe | ν1〉+ b′〈νe | ν2〉 = 1
〈νµ | ψ〉 = 0⇒ a′〈νµ | ν1〉+ b′〈νe | νµ〉 = 0

The inner product

〈νe | ν1〉 = ( 1 0 )
1√
2

(
1
1

)
=

1√
2

Also 〈νe | ν2〉 = 〈νµ | ν1〉 = −〈νµ | ν2〉 = 1√
2
. Substitution into the

above gives a′ = b′ = 1√
2
. Therefore

| ψ(t)〉 =
1√
2

(
| ν1〉e−

i
h̄
E1t + | ν2〉e−

i
h̄
E2t
)
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Pµ(t) = |〈νµ | ψ(t)〉|2 = sin2 E1 − E2

h̄
t

Pe(t) = |〈νe | ψ(t)〉|2 = cos2 E1 − E2

h̄
t

We would measure energy E1 with probablity 1/2 and E2 with
probability 1/2.

2. Griffiths 8.1. The simplicity of the WKB method is that we can
directly right down the form of the wavefunction, and the relevant
quantization conditions imposed by the form of the boundary. In this
case, we have that the WKB wavefunction is

ψ(x) ≈ C√
P (x)

exp
(
± i
h̄

∫
P (x)dx

)
,

here P (x) =
√

2m(ε− V (x)). Our connection formula show that the
boundary conditions imply that our phase is quantized as∫ a

0
P (x)dx = πnh̄,

where n is an integer. Therefore,∫ a/2

0

√
2m(ε− V0) dx+

∫ a

a/2

√
2mε dx = πnh̄,√

2mε(1− V0

ε
) +
√

2mε = πnh̄
2

a
,

ε

√1− V0

ε
+ 1

2

=
4π2n2h̄2

2ma2
= 4E0

n,

εn =
E0
n[

1
2

(√
1− V0

εn
+ 1

)]2 ≈ E0
n[

1
2

(√
1− V0

E0
n

+ 1
)]2 .

In order to compare with perturbation theory, we need to make the
further assumption that En � V0, which would then give that εn ≈
E0
n + V0/2.

3. Griffiths 8.6. Analyze the bouncing ball (gravitational potential)
problem using the WKB approximation.
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(a) Find the allowed energies, En, in therms of m, g, and h. [The
potential

V (x) =

{
0 x < 0
mgx x > 0

(1)

We use the quantization condition for a potential well with one
vertical wall, namely∫ xt

0
pdx =

(
n− 1

4

)
πh̄

At the turning point E = V (xt) = mgxt → xt = E/mg. Then∫ xt

0
pdx =

∫ xt

0

√
2m(E − V )

=
∫ xt

0

√
2m(E −mgx)dx

=
√

2m2g
∫ xt

0

√
(
E

mg
− x)dx

=
√

2m2g
(
−2

3

)(
E

mg
− x

) 3
2

|
E
mg

0

=
√

2m2g
(

2

3

)(
E

mg

) 3
2

=

√
2
m

g

(
2

3

)
E

3
2 =

(
n− 1

4

)
πh̄

→ E =

(
mg2h̄2

2

) 1
3 (3π

2

) 2
3
(
n− 1

4

) 2
3

]

(b) Compare the WKB approximation to the first four energies with
the ”exact” results that we found in class.

[Let En = εnE0, where E0 =
(
mg2h̄2

2

) 1
3 .

Then εn(WKB) =
(

3π
2

) 3
2
(
n− 1

4

) 2
3 .

εn(WKB) and the first four zeros of Ai(z)
are compared in the table.]

n εn(WKB) εn (Exact)
1 2.319 2.338
2 4.081 4.088
3 5.518 5.521
4 6.785 6.787

(c) About how large would the quantum number n have to be to give
the ball an average height of, say, 1 meter above the ground? [
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According to the Virial Theorem the expectation values of kinetic
and potential energy in a stationary state are related:

2〈T 〉 = 〈xdV
dx
〉

For the gravitational potential x(dV/dx) = V . Therefore since
E = T + V we have that

En =
3

2
〈V 〉 =

3

2
mg〈x〉

The energy of the ball is

En =

(
mg2h̄2

2

) 1
3 (3π

2

) 2
3
(
n− 1

4

) 2
3

→ n = E
3
2
n

(
2

mg2h̄2

) 1
2 ( 2

3π

)
+

1

4

or in terms of 〈x〉

n =
(

3

2
mg〈x〉

) 3
2

(
2

mg2h̄2

) 1
2 ( 2

3π

)
+

1

4

=
m

h̄
〈x〉

3
2 (3g)

1
2

(
1

π

)
+

1

4

=
(0.1 kg)

(1.05× 10−34 J− s)
(1 m)

3
2 (3(9.8 m/s2))

1
2

(
1

π

)
+

1

4

= 1.6× 1034

4. Griffiths 8.8. This problem involves the harmonic oscillator. The
potential V (x) and allowed energies are known to be

V (x) = 1/2 mω2x2,

V ′(x) = mω2x,

E = (n+ 1/2)h̄ω.

The first part requires that we find a turning point x2, such that
V (x2) = E. It follows from the equations above that that

x2 =

√
2(n+ 1/2)h̄

mω
.
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Next we need to calculate the potential to linear order, we have

Vlin(x) = (n+ 1/2)h̄ω +mω

√
2(n+ 1/2)h̄

mω
x.

And we need to calculate d such that

V (x2 + d)− Vlin(x2 + d)

V (x2)
= 0.01,

x2
2 + d2 + 2x2d− x2

2 − 2x2d

x2
2

= 0.01,

d = 0.1 x2.

We have that d = 0.1 x2, and we need to find the smallest n such that
αd ≥ 5. We have

α =
[
2m

h̄2 V
′(x2)

] 1
3

,

=
[
2m

h̄2 mω
2x2

] 1
3

,

αd =
[
2m

h̄2 mω
2x4

2

] 1
3

0.1,

=

[
2m

h̄2 mω
2 4(n+ 1/2)2h̄2

m2ω2

] 1
3

0.1,

= 2(n+ 1/2)
2
3

1

10
≥ 5,

(n+ 1/2) ≥ (25)
3
2 ,

n ≥ (25)
3
2 − 1/2 ≈ 125.

5. Griffiths 8.15 .

(a) We begin by writing the WKB wave functions for each of the
regions

ψi =
1√
|p|

(
Ce

1
h̄

∫ x
x2
|p(x′)|dx′

+De
− 1
h̄

∫ x
x2
|p(x′)|dx′

)
(2)

ψii =
1
√
p

(
Ae

i 1
h̄

∫ x
x2
p(x′)dx′

+Be
−i 1

h̄

∫ x
x2
p(x′)dx′

)
(3)
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ψ′ii =
1
√
p

(
A′e

i 1
h̄

∫ x
x1
p(x′)dx′

+B′e
−i 1

h̄

∫ x
x1
p(x′)dx′

)
(4)

ψiii =
1√
|p|

(
C ′e

1
h̄

∫ x
x1
|p(x′)|dx′

+D′e
− 1
h̄

∫ x
x1
|p(x′)|dx′

)
(5)

Note that we always integrate away from the turning points. Then
there are two alternative versions of ψii, one referenced to x1 and
one referenced to x2. We will use ψii when we are connecting to
ψi at x2, and we use ψ′ii when we connect to ψiii at x1.

In order that ψi be finite for large positive x, C = 0. Then use
the connection formulae for a barrier to the right (page 4 of WKB
notes) and we find that

A = Deiπ/4, and B = De−iπ/4 (6)

ψii =
D
√
p

(
e
i 1
h̄

∫ x
x2
p(x′)dx′+iπ/4

+ e
−i 1

h̄

∫ x
x2
p(x′)dx′−iπ/4

)

=
2D
√
p

cos
(

1

h̄

∫ x

x2

p(x′)dx′ + π/4
)

=
−2D
√
p

sin
(

1

h̄

∫ x

x2

p(x′)dx′ − π/4
)

=
2D
√
p

sin
(

1

h̄

∫ x2

x
p(x′)dx′ + π/4

)

Now we can use the connection formulae for a boundary to the
left (page 5 of the WKB notes) to relate A′ and B′ to C ′ and D′.
We get that

D′ = A′e−iπ/4 +B′eiπ/4 (7)

C ′ =
1

2
(A′eiπ/4 +B′e−iπ/4) (8)

The next thing to do is to relate A′ and B′ to A and B. We can
rewrite Equation 4 as

ψ′ii =
1
√
p

(
A′e

i 1
h̄

(∫ x2
x1

p(x′)dx′+
∫ x
x2
p(x′)dx′

)
+B′e

−i 1
h̄

(∫ x2
x1

p(x′)dx′+
∫ x
x2
p(x′)dx′

))
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Comparison with Equation 3 gives

A′eiθ = A (9)

B′e−iθ = B (10)

where θ =
∫ x2
x1
p(x′)dx′. Substitution of Equations 6 9 and 10

into Equations 7 and 8 gives

D′ = Ae−iθe−iπ/4 +Beiθeiπ/4

= Deiπ/4e−iθe−iπ/4 +De−iπ/4eiθeiπ/4

= 2D cos θ

C ′ =
1

2
(Ae−iθeiπ/4 +Beiθe−iπ/4)

=
1

2
D(eiπ/4e−iθeiπ/4 + e−iπ/4eiθe−iπ/4)

C ′ = D sin(θ)

Finally

ψiii =
D√
|p|

(
sin θe

1
h̄

∫ x
x1
|p(x′)|dx′

+ 2 cos θe
− 1
h̄

∫ x
x1
|p(x′)|dx′

)

=
D√
|p|

(
sin θe−

1
h̄

∫ x1
x
|p(x′)|dx′ + 2 cos θe

1
h̄

∫ x1
x
|p(x′)|dx′

)
(11)

(b) If the wave function is antisymmetric then ψiii(0) = 0 and we see
from Equation 11 that

ψiii(0) =
D√
|p|

(
sin θe−

1
h̄

∫ x1
0
|p(x′)|dx′ + 2 cos θe

1
h̄

∫ x1
0
|p(x′)|dx′

)

ψiii(0) = 0→ tan θ = −2e
2
h̄

∫ x1
0
|p(x′)|dx′ = −2e

1
h̄

∫ x1
−x1
|p(x′)|dx′

= −2eφ

If ψiii(x) is symmetric then

ψiii(x1) = ψiii(−x1)

D√
|p|

(sin θ + 2 cos θ) =
D√
|p|

(
sin θe

− 1
h̄

∫ x1
−x1
|p(x′)|dx′

+ 2 cos θe
1
h̄

∫ x1
−x1
|p(x′)|dx′

)

sin θ + 2 cos θ =
(
sin θe−φ + 2 cos θeφ

)
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→ tan θ = 2
eφ − 1

1− e−φ

= 2
eφ/2(eφ/2 − e−φ/2)

e−φ/2(eφ/2 − e−φ/2)

= 2eφ

(c) The quantization condition is

tan θ = ±2eφ

If θ = (n+ 1
2
)π + ε where ε� 1 then

tan
(

(n+
1

2
)π + ε

)
∼ −1

ε

= ±2eφ

→ ε = ∓1

2
e−φ

→ θ = (n+
1

2
)π + ε = (n+

1

2
)π ∓ 1

2
e−φ

(d) We have that

θ =
1

h̄

∫ x2

x1

p(x′)dx′

=
1

h̄

∫ x1

x1

√
2m(E − V (x′)dx′

=
1

h̄

∫ x2

x1

√
2m(E − 1

2
mω2(x− a)2)dx′

=
1

h̄
mω

∫ x2

x1

√
y2

0 − y2dy

where y = x− a, and y2
0 = 2E

mω2 . x1 and x2 are the turning points
defined by

E =
1

2
mω2(xt − a)2
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or yt = ±y0. So

θ =
1

h̄
mω

∫ y0

−y0

√
y2

0 − y2dy (12)

=
mω

h̄

1

2

√y2
0 − y2y + y2

0 tan−1

 y√
y2

0 − y2

y0

−y0

=
mω

h̄2
(y2

0π)

=
mω

h̄2

2Eπ

mω2
=
Eπ

h̄ω

The

E±n π

h̄ω
= (n+

1

2
)π ∓ 1

2
e−φ

→ E±n = (n+
1

2
)h̄ω ∓ h̄ω

2π
e−φ

(e)

Ψ(x, t) =
1√
2

(ψ+
n e
−iE+

n t/h̄ + ψ−n e
−E−n t/h̄)

|Ψ(x, t)|2 =
1

2
(|ψ+

n |2 + |ψ−n |2 + 2ψ+
n ψ
−
n cos(E+

n − E−n )t/h̄)

=
1

2
(|ψ+

n |2 + |ψ−n |2 + 2ψ+
n ψ
−
n cos 2πt/τ)

where

τ =
2πh̄

(E+
n − E−n )

=
2πh̄
h̄ωe−φ

π

=
2π2

ω
eφ

(f) We have an integral like the one in Equation 12, but now we set
the limits to be x = 0 → ymax = −a, and x1 = y0. Also, in this
range, y is always greater than y0 so we have

φ =
2

h̄

∫ 0

−x1

|p(x′)|dx′ = 2mω

h̄

∫ ymax

−y0

√
y2 − y2

0dy

=
mω

h̄

(
y
√
y2 − y2

0 − y2
0 log

(
y +

√
y2 − y2

0

))ymax
−y0

=
mω

h̄

[(
a
√
a2 − y2

0 − y2
0 log

(
a+

√
a2 − y2

0

))
− y2

0 log(y0)
]
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Now since y2
0 = 2E

mω2 and a2 = 2V (0)
mω2 , the limit where V (0)� E, is

equivalent to a2 � y2
0 and we get that

φ =
mω

h̄

2V (0)

mω2
=
mωa2

h̄

6. Symmetry/Antisymmetry of WKB wavefunctions In this prob-
lem you need to show explicitly that for the WKB wavefunctions, we
have that ψ(−x) = ±ψ(x). In general, this could be a tedious task,
were it not for the connection formulas derived in class. In the lecture
notes, we found the quantization condition cosφ = 0→ φ = (n+1/2)π.
(Refer to Eq. (18) and Eq. (19)). The other condition from Eq. (18)
is:

D

C
= sinφ.

Using the quantization condition for cosφ, we see that sinφ = ±1
(and this is true in general where we have not yet specified that the
potential is symmetric). The key observation at this stage is that
C/D = ±1. The next step is to calculate ψ(x) and ψ(−x). We calcu-
late ψ(x) from the right barrier, and find that A = D exp(iπ/4) and
B = D exp(−iπ/4), and because we are integrating from right to left,
the limits of the integration go from x2 to x. To calculate ψ(−x) we cal-
culate it from the left barrier, where we know that A′ = C exp(−iπ/4)
and B′ = C exp(iπ/4). And in this case the integration goes from x1 to
x. Now we impose the symmetry of the potential. Since V (x) = V (−x),
we have that p(x) = p(−x), and that∫ x

x1

=
∫ x2

x
= −

∫ x

x2

.

This reversal of the sign of the integral means that we have to compare
the co-efficients of A′ and B, and similarly the co-efficients B′ and A,
where the prime refers to the co-efficients of ψ(−x) and the non-primed
refers to ψ(x). Or to write this out explicitly, we have

ψ(x) = A exp
(
i

h̄

∫ x

x2

p(x′)dx′
)

+B exp
(
− i
h̄

∫ x

x2

p(x′)dx′
)

ψ(−x) = A′ exp
(
i

h̄

∫ x

x1

p(x′)dx′
)

+B′ exp
(
− i
h̄

∫ x

x1

p(x′)dx′
)

= A′ exp
(
− i
h̄

∫ x

x2

p(x′)dx′
)

+B′ exp
(
i

h̄

∫ x

x2

p(x′)dx′
)
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A = D exp
(
iπ

4

)
B = D exp

(−iπ
4

)
B′ = C exp

(
iπ

4

)
A′ = C exp

(−iπ
4

)

We see that
ψ(x)

ψ(−x)
=
C

D
= ±1.

This proves that for a symmetric potential, the WKB wavefunctions
are either even or odd.
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