1. **Angular momentum** 1

Consider a system with total angular momentum 1 and with basis vectors
\[\chi_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \chi_0 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \chi_{-1} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \]

(a) Derive matrix representations of \(L_\pm, L_z, L^2 \) and \(L_y \).

(b) Any state \(\psi \) with angular momentum \(l = 1 \) can be written as a linear combination of the base states.
\[\psi = a\chi_1 + b\chi_0 + c\chi_{-1} \]
where \(a, b, \) and \(c \) are the amplitudes for the various components of angular momentum with respect to the z-axis. In a new coordinate system that is related to the original by a rotation by an angle \(\theta \) about the y-axis, we can write
\[\psi = a'\chi'_1 + b'\chi'_0 + c'\chi'_{-1} \]

\(a', b', \) and \(c' \) are amplitudes for components of angular momentum along the \(z' \) axis. The angle between the \(z \) axis and the \(z' \) axis is \(\theta \). Derive the rotation matrix \(R_y(\theta) \) that relates \(a, b \) and \(c \) with \(a', b', \) and \(c' \).

2. **Griffiths 4.19.**

(a) Starting with the canonical commutation relations for position and momentum
\[[r_i, p_j] = i\hbar \delta_{ij}, \quad \text{where } r_1 = x, r_2 = y, r_3 = z, \text{ and } p_1 = p_x, p_2 = p_y, p_3 = p_z \]
work out the following commutators:
\[[L_z, x] = i\hbar y, \quad [L_z, y] = -i\hbar x, \quad [L_z, z] = 0, \]
\[[L_z, p_x] = i\hbar p_y, \quad [L_z, p_y] = -i\hbar p_x, \quad [L_z, p_z] = 0. \quad (1) \]

(b) Use these results to obtain \([L_z, L_z] = i\hbar L_y \) directly from
\[L_x = yp_z - zp_y, \quad L_y = zp_x - xp_z, \quad L_z = xp_y - yp_x. \]
(c) Evaluate the commutators \([L_z, r^2]\) and \([L_z, p^2]\) (where, of course,
\(r^2 = x^2 + y^2 + z^2\) and \(p^2 = p_x^2 + p_y^2 + p_z^2\)).

(d) Show that the Hamiltonian \(H = (p^2/2m) + V\) commutes with all
three components of \(L\), provided that \(V\) depends only on \(r\). (Thus
\(H, L^2,\) and \(L_z\) are mutually compatible observables.)

(a) Prove that for a particle in a potential \(V(r)\) the rate of change of
the expectation value of the orbital angular momentum \(L\) is equal
to the expectation value of the torque:
\[
\frac{d}{dt} \langle L \rangle = \langle N \rangle,
\]
where
\[
N = r \times (-\nabla V).
\]
(This is the rotational analog of Ehrenfest’s theorem.)

(b) Show that \(d\langle L\rangle/dt = 0\) for any spherically symmetric potential.
(This is one form of the quantum statement of conservation of angular momentum.)

4. Griffiths 4.22

(a) What is \(L_\pm Y_l^l\)? (No calculation allowed!)

(b) Use the result of (a), together with the fact that
\[
L_\pm = \pm \hbar e^{\pm i\phi} \left(\frac{\partial}{\partial \theta} \pm \cot \theta \frac{\partial}{\partial \phi} \right),
\]
and the fact that \(L_z Y_l^l = \hbar l Y_l^l\), to determine \(Y_l^l(\theta, \phi)\), up to a
normalization constant.

(c) Determine the normalization constant by direct integration. Compare your answer for \(l = 3\) to what appears in the table on page 139.

5. Griffiths 4.27. An electron is in the spin state
\[
\chi = A \left(\frac{3i}{4} \right).
\]
(a) Determine the normalization constant A.

(b) Find the expectation values of S_x, S_y, and S_z.

(c) Find the "uncertainties" σ_{S_x}, σ_{S_y}, and σ_{S_z}. (Note: These sigmas are standard deviations, not Pauli matrices!)

(d) Confirm that your results are consistent with all three uncertainty principles, namely

$$\sigma_{S_x} \sigma_{S_y} \geq \frac{\hbar}{2} |\langle L_z \rangle|$$

and its cyclic permutations.

6. Griffiths 4.28. For the most general normalized spinor χ where

$$\chi = \begin{pmatrix} a \\ b \end{pmatrix} = a\chi_+ + b\chi_-,$$

with

$$\chi_+ = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \text{ and } \chi_- = \begin{pmatrix} 0 \\ 1 \end{pmatrix},$$

compute $\langle S_x \rangle$, $\langle S_y \rangle$, $\langle S_z \rangle$, $\langle S_x^2 \rangle$, $\langle S_y^2 \rangle$, and $\langle S_z^2 \rangle$. Check that $\langle S_x^2 \rangle + \langle S_y^2 \rangle + \langle S_z^2 \rangle = \langle S^2 \rangle$.