Physics 443, Solutions to PS 5

1. Angular Momentum

(a) Since [ =1 and m = £1,0, we have that

where [ = 1.
L, Xm = hmXm.

and

Laxom = FyJl(L+ 1) — m(m £ 1)Xmir

To calculate L,, we use that

0 V2 0 0 1 0
L.—L_ h I 7
Ly=+T % V2 0 V2 =5 1 0 1 |=-J
7 7 0 _\/§ 0 7 1 0 7

(b) Using that R,(0) = exp(iL,0/h) = exp(J#), and doing a Taylor
expansion we find that

1
= I+0J+ 2«92J2+ 3103J3+ Loy
_ Lo Lo, 1o,
= I+9J+29J 3!¢9J 4!9J...
= I+ Jcosf+ J*(1 —cosb)

1 1+cosf® +2sinf 1—cosh
—| =v2sinf®  2cosh V2sin 6
1—cosf —+/2sinf 1+ cosb

where we have used the fact that J°> = —J and J* = —J2.

2. Griffiths 4.19.



[L.,x] = [zpy — ype, x| = [2Dy, x| — [YDs, ] = —Yy[ps, x| = ihy

[L.,yl = [2py — Ypery] = [20y, y] — [Yps, y] = x[py, y] = —iha
[L..2] = [xpy — ypa, 2] = [2py, 2] — [Ypa, 2] =0
(L..ps] = [2py — YPs, D] = [Py, D2] — [YD2, P2) = DylT, pa] = ihpy
(L.,py] = [xpy — YDz, py] = [2Dy, y] — [YP2: Dy] = —Daly, 0y] = —thps
[Lzapz] - [xpy - ypzapz] - [«pr;pz] - [ypzapz] =0
(b)
[Lza Lx] - [LZJ Yyp: — Zpy]

y[L.,p2] + [Lz, ylp. — Z[szpy] — (L, Z]py
0 —thap, + thzp, + 0
= ih(zp, — xp,) = ihL,

[LZJ"Z] = [LZ,xQ] + [L., y2] +[L., 22]
= (L., a]+ L., x]e +y[L., y] + [L., yly + 2[Ls, 2] + [L., 2]z
= 12hxy — i2hyx + 0
=0

[L27p2] = [Lzapi] + [Lzapi] + [LZapi]
= pulLle,pa) + [Lzy Dalpe + pylLzy py] + [Lzy pylpy + 2Lz, 02 + (L, palp-
= 12hpypy — i2hpyp, + 0

A

= ([ph L) + P L) + 2 L)2)
(r

. + [V (r), Lo)a + [V(r), L,)g + [V (r), L.]2

In the last step we take advantage of the fact that if [L.,p?| =
0, then the same must be true for L,, and L,. The x,y and z
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components of the angular momentum operator can be written as
differential operators that are functions only of # and ¢. Since the
operator does not have an r dependence it will commute with a
function V'(r) that depends only on 7.

3. Griffiths 4.20. From the Equation of Motion, we have that
d i
—(L) = —(|H, L]).
CAL) = (1, L])

We can calculate this commutator as follows

[H.1) = [ L]+ [Vir x pl. 1)

We showed in problem in problem 2 (Griffiths 4.19), that [L., p?] = 0.
The same is true for L, and L, so the first term vanishes. . Then
[Vir xp] = —r x [V,p] = [V(r),x] xp

The second commutator is zero since V (r) is a function of r. For the
second term, you can write p = —ihYV. Then

r x [V,p] = —ihr x [V, V] =ihr x VV
It follows that

d
£<L> =rx (=VV(r)).

For a potential that depends only on the magnitude of r, we see that
the gradient of V(|r|) is in the I direction, and r X & = 0 giving us that
the angular momentum is conserved.

4. Griffiths 4.22. Being a state of maximum L., we get that L Y} = 0.
To get the functional form,we write L, as a differential operator,

L, = he (8 + i cot 98> .

06 0¢
Then
0 = LY
. 0
— i [ 7 . e l
he (86 +zcot98¢> Y (0, 9)

(18 0\,
—0 = <cot989+28¢>yl(9’¢)



We try separating variables and write Y}'(6, ¢) = g(6)h(¢$) and then

0 = (coiaag * g 1O
1 0 i 0
™ cotg(0) %9(9) = —m%h(@ =k

As usual since all of the 6 dependence is on the left and all of the ¢
dependence on the right, then both are equal to a constant, k. Then

h .
d }(:b) — ikdp — h = (constant)e’*®
Also
dg
g kcotfg — In(g) = k/cot 6do
= klnsin# + constant
=g = csin®f

And so Y}'(, ) = csin® #e*®. We use the fact that Y} is an eigenstate
of L, with eigenvalue Al to determine k.

LY = h;csink fe'r?

Wl = hkesin® 6™
=k = |

We fix the normalization constant by integrating.

27w
1 = ]c]z/ / sin? 6 sin 0dOd¢
o Jo

We use that

VB

1 = 27r]c|2/sin21+1(9) db.
/ sin2P1 cog20-1 — I'(p)I'(q)
0 2l'(p+q)

In our case, ¢ = 1/2, and p = [ + 1. Putting it all together, we have

that _—
1= 47r\c|27< 1)ym
2I'(1 + 3/2)



In the particluar case that [ = 3, we have

-[;

ri+3/2) [ 7

(I+1)2my/T

B \/35
31725\ 64r

. Griffiths, 4.27. An electron is in the spin state

X:A@f).

(a) Determine the normalization constant A.

[X

Ty

= A

L= JAR(=3i 4) (] ) = 4PE5)
1
5

(b) Find the expectation values of S, S,, and S,.

[(Sa)

(—3i

B0 1Y (3
— - 2(_ _
= X5 = AP 4)2(1 0)<4)
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(c) Find the "uncertainties” og,,0s,, and og,. (Note : These sigmas
are standard deviations, not Pauli matrices!) [Remember that
og = (S7) — (S;)?, and also that S? = 152, Then

0§, = (S5 —(S.)" = 712(1 -0)= ZQ
0 = (SH)—(S,)’ = 22(1 - (;;lf) = FZ (275>2
0f = (S —(S.)*= T“ B (275)> - Z (;é‘)J

(d) Confirm that your results are consistent with all three uncertainty
principles, namely

h

and its cyclic permutations.

osos, = (3) (%)= () s
05,05 = (Z) 275;§E© (s,

- (2 (- (%

6. Griffiths 4.28. For the most general normalized spinor x where

Il
N
o | St
~
(Y]
P

[\
S|~
~_

=0

~

a
X = (b) = ax+ +bx-,

1 0
v () = (1),

compute (S;), (Sy), (S2), (S2), (S7), and (S2). Check that (S7)+(S;) +
(52) = (5%)

with

(s = S (0 (8) = bt va)
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0 —i\ (a —ih, .
i o)<b>=2(ab—ba)

@ (g ) (3) = 0=

Since S2 = S} = 52 = 352, it follows that
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(S2) = (S;) = (5.)" = ;<S2> _ ihQ



