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1.Griffiths 5.7. For notational simplicity, we define ψ1
.
= ψa, ψ2

.
= ψb, ψ3

.
=

ψc. Then we can write:

Distinguishable ψ({xi}) =
3
∏

i=1

ψi(xi)

Bosons ψ({xi}) =
3
∑

i,j,k=1

ψa(xi)ψb(xj)ψc(xk)(ǫijk)
2

Fermions ψ({xi}) =
3
∑

i,j,k=1

ψa(xi)ψb(xj)ψc(xk)(ǫijk)

2.Griffiths 5.11. This question is solving a messy integral. Lets tackle the
physics i.e. part(b) first. Since

Vee =
e2

4πǫ0
〈 1

|r1 − r2|
〉,

using part (a) we can estimate that Vee = −5ǫ1/2 = +34ev. Therefore an
approximation to the energy of ground state of Helium would be −109+34 =
−75ev, which compares nicely to the experimental value of −79ev.
Now to the integral of part (a). Using the choice of coordinates recommended
by Griffiths, we need to solve the following integral.

I =
∫

d3r1 d
3r2

(

8

πa3

)2 exp(−4(r1 + r2)/a)
√

r2
1 + r2

2 − 2r1r2 cos θ2
.

We proceed as follows. First we scale our variables r1 and r2 to remove
the length-scale a. Then we perform the integral over θ2. Notice that as
a function of θ2, we simply have a square-root form of the integrand (since
sin θ2 dθ2 = −d(sin θ2)). Also the dφ2 integral is trivial giving us a 2π. So
we can rewrite our integral in the form

2π
(

64

π2a

)
∫

d3r1 r
2
2 dr2 exp(−4(r1 + r2))

(

r1 + r2
r1r2

− |r1 − r2|
r1r2

)

.

Notice that this last bit is different depending on which of r1 and r2 is greater.
In particular, if 0 < r2 < r1 it gives 2/r1, and for r1 < r2 <∞ we have 2/r2.
This means that we can rearrange our integral as follows:

4π
(

64

π2a

)
∫

d3r1 exp(−4r1)

(

∫ r1

0
dr2

r2
2

r1
e−4r2 +

∫

∞

r1

dr2 r2e
−4r2

)

.
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The dr2 integrals can now be done. We turn to the d3r1 integral, where the
angular part just gives us 4π. We are left with just the radial integral as
follows:

I =
(

32

a

)
∫

∞

0
dr1 (r1e

−4r1 − 2r2
1e

−8r1 − r1e
−8r1) =

5

4a

3.Griffiths 5.18.

(a) Using

ψ(x) = A sin(kx) +B cos(kx), (0 < x < a) (1)

and

A sin(ka) = [eiKa − cos(ka)]B, (2)

show that the wave function for a particle in the periodic delta function
potnetial can be written in the form

ψ(x) = C[sin(kx) + e−iKa sin k(a− x)], (0 ≤ x ≤ a).

[We can solve Equation 2 for A and substitute into Equation 1 to get

ψ(x) =
B

sin(ka)

(

(eiKa − cos(ka)) sin(kx) + cos(kx) sin(ka)
)

=
BeiKa

sin(ka)

(

sin(kx) + e−iKa(cos(kx) sin(ka) − cos(ka) sin(kx)
)

=
BeiKa

sin(ka)

(

sin(kx) + e−iKa sin k(a− x)
)

= C
(

sin(kx) + e−iKa sin k(a− x)
)

(b) We see from Equation 2 that if ka = z = nπ then either B = 0, or
eiKa = cos(nπ) = ±1. Then substitution into the equation matching
the derivative of the wavefunction.

kA− e−iKak[A cos(ka) −B sin(ka)] = −2mαB/h̄2 (3)

becomes
kA− e−iKakA cos(nπ) = −2mαB/h̄2 (4)

2



and therefore B = 0. So the wave function at the top of the band is

ψ(x) = A sin(kx)

and it is zero at each delta function.

4.Griffiths 5.20. If there are delta function wells instead of spikes then
V (x) =

∑N−1
i αδ(x − ia), α < 0, and we have to consider solutions with

E < 0. Then the general solution is

ψ(x) = A sinh(κx) +B cosh(κx) (0 < x < a) (5)

where κ =
√
−2mE/h̄ and the wave function to the left of the origin is

ψ(x− a) = e−iKa[A sinh(κx) +B cosh(κx)] (6)

Continuity at x = 0 implies

e−iKa[A sinh(κa) +B cosh(κa)] = B (7)

The boundary condition for the derivatives gives

κA− κe−iKa[A cosh(κa) +B sinh(κa)] =
2mα

h̄2 B (8)

We solve Equation 7 for A and substitute into Equation 8 and get

2mα

κh̄2 B sinh(κa) = B(eiKa − cosh(κa)) − e−iKa
(

B(eiKa − cosh(κa)) cosh(κa) +B sinh2(κa)
)

2mα

κh̄2 sinh(κa) = eiKa − 2 cosh(κa) − e−iKa
(

(− cosh(κa)) cosh(κa) + sinh2(κa)
)

= 2 cosKa− 2 cosh(κa)

→ cosKa = cosh(κa) +
mα

κh̄2 sinh(κa)

→ f(z) = cosh(z) + β
sinh(z)

z

where z = −κa and β = mαa/h̄2. f(z) for the negative energy solutions
with delta function wells, (β = −1.5) is plotted in Figure 1. f(z) for the
positive energy states with delta function wells is shown in Figure 2. We see
that the first band is has the same number of states as he subsequent bands.
Some of these states are at energies less than zero, and the remainder of the
band is filled by states with energies greater than zero.
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Figure 1: Negative energy states, β = −1.5
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Figure 2: Positive energy states, β = ±1.5. The red line is f(z) for delta
function wells, and the blue dashed line for delta function spikes.
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5.Griffiths 5.23.

(a) Because the energy E = 9/2 h̄ω, and (nx + ny + nz + 3/2)h̄ω =
E, we see that nx + ny + nz = 3. For distinguishable particles, we
have the following particle configurations: (0, 3, 0, 0, 0 · · ·), d = 1, and
(2, 0, 0, 1, 0 · · ·), d = 3, and (1, 1, 1, 0, 0 · · ·), d = 6. Here d is the de-
generacy of that configuration. Check that for each configuration, the
sum of the entries is the number of particles N = 3. Also check that
the sum of the degeneracy

∑

d = 1 + 3 + 6 = 10 is what we would
expect from d3 = (n + 1)(n + 2)/2 = (4)(5)/2 = 10. The probability
of getting E = h̄ω/2 is the sum of the contribution from the second
configuration (3/10)(2/3) plus the contribution from the third config-
uration (1/3)(6/10), giving P (h̄ω/2) = (2/5). Similarly you can verify
that P (3h̄ω/2) = 3/10, P (5h̄ω/2) = 1/5, P (7h̄ω/2) = 1/10.

(b) For the case of Fermions, there is only one allowed configuration (1, 1, 1, 0 · · ·).
We have that with P = 1/3, each of the states 2E = h̄ω, 3h̄ω, and 5h̄ω
are possible.

(c) For Bosons, the three configurations of part (a) are equally likely, giving
us P (h̄ω/2) = 1/3, P (3h̄ω/2) = 4/9, P (5h̄ω/2) = 1/9, P (7h̄ω/2) =
1/9.

6.Griffiths 5.28. Evaluate the integrals

N =
V

2π2

∫

∞

0

k2

e[(h̄
2k2/2m)−µ]/kBT ± 1

dk (9)

E =
V

2π2

h̄2

2m

∫

∞

0

k4

e[(h̄
2k2/2m)−µ]/kBT ± 1

dk (10)

for the case of identical fermions at absolute zero. [At T = 0, the chemical
potential µ = EF . Then at T = 0, Equations 9 and 10 become

ρ =
1

2π2

∫ kF

0
k2dk =

1

6π2
k3

F (11)

E =
V

2π2

h̄2

2m

∫ kF

0
k4dk =

V

10π2

h̄2

2m
k5

F (12)

With the substitution kF =
(

2mEF

h̄2

)
1

2 , Equations 11 and 12 become

ρ =
1

6π2

(

2mEF

h̄2

)

3

2

⇒ EF = (6π2ρ)
2

3

h̄2

2m
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E =
V

10π2

h̄2

2m

(

2mEF

h̄2

)

5

2

=
V

10π2

h̄2

2m

(

6π2ρ
)

5

3

=
1

10π2

h̄2

2m

(

6π2Nq
)

5

3 V −2/3

which agree with our analysis of free electrons in a solid where we found that

EF =
h̄2

2m
(3ρπ2)2/3 (13)

Etot =
h̄2(3π2Nq)5/3

10π2m
V −2/3] (14)

(Note that for electrons there is an extra factor of 2 in Equations 13 and 14,
to account for the spin degeneracy.)

7.Griffiths 5.29

(a) Show that for bosons the chemical potential must always be less than
the minimum allowed energy. Hint : n(ǫ) cannot be negative.

[For bosons, the most probable number of particles in a given state
with energy ǫ is

n(ǫ) =
1

e(ǫ−µ)/kBT − 1

We see that n(ǫ) < 0 if µ > ǫ.]

(b) In particular, for the ideal bose gas, µ(T ) < 0 for all T . Show that in
this case µ(T ) monotonically increases as T decreases, assuming N and
V are held constant. Hint : Study Equation 9, with the minus sign.

[Consider the exponent (h̄2k2/2m − µ)/kBT . If T → 0, and µ < 0,
then the exponent is infinite for all k, and N/V → 0. The ratio N/V
can only be preserved if µ(T ) → 0 as T → 0.]

(c) A crisis (called Bose condensation) occurs when (as we lower T )
µ(T ) hits zero. Evaluate the integral, for µ = 0, and obtain the for-
mula for the critical temperature Tc at which this happens. Below the
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critical temperature, the particles crowd into the ground state, and the
calculational device of replacing the discrete sum

∞
∑

n=1

Nn = N,

by a continuous integral (Equation 9) loses its validity. Hint :
∫

∞

0

xs−1

ex − 1
dx = Γ(s)ζ(s),

where Γ is Euler’s gamma function and ζ is the Riemann zeta

function. Look up the appropriate numerical values.

[In the limit where µ = 0, Equation 9 for bosons is

ρ =
1

2π2

∫

∞

0

k2

e[(h̄
2k2/2m)]/kBT − 1

dk

Let x = (h̄2k2/2mkBT ) and the integral becomes

ρ =
1

4π2

(

2mkBT

h̄2

)3/2
∫

∞

0

x
3

2
−1

ex − 1
dx

=
1

4π2

(

2mkBT

h̄2

)3/2

Γ(
3

2
)ζ(

3

2
)

=
1

4π2

(

2mkBT

h̄2

)3/2 √
π

2
(2.61238)]

(d) Find the critical temperatiure for 4He. Its density, at this temperature,
is 0.15gm/cm3. Comment : The experimental value of the critical
temperature in 4He is 2.17 K.

[Solve for

T =

(

4π2ρ

(
√
π/2)(2.61238)

)2/3
h̄2

2mkB

=

(

4π2(150 kg/ m3)/(6.64 × 10−27kg)

(
√
π/2)(2.61238)

)2/3

× (1.054 × 10−34)2( J − s)2

2(6.64 × 10−27 kg)(1.38 × 10−23 m2 kg s−2 K−1)

= 3.2 K]
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