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1. Griffiths 5.35. Using the assumption that the volume of the star is
V = 4πR3/3, we can plug this into the equation for the total energy to get
that

Eelectron =
2h̄2

15πmR2
(
9πNq

4
)

5
3 .

We also have that the gravitational energy is given by

Egravity = −3

5
G (NM)2

R
.

We can add these two to get the total energy. The condition we are looking
for is when dE/dR = 0. Plugging in and solving for R we find that

R =
(

9π

4

) 2
3 h̄2q5/3

GmM2N
1
3

.

Substituting for numerical values, we get that R = 7.58x1025N−1/3. Using
that the mass of the sun Ms = 2x1030 Kg, we have that R = 7.16x106

meters. For the last part, we know that the Fermi energy is given by
(h̄2/2m)(9π2Nq/(4πR3))2/3. This is about 0.194Mev, which is approaching
the rest mass of the electron m0 = 0.5Mev.

2. Griffiths 6.5. In this problem we have the harmonic oscillator problem
with a perturbation of the form H = −qEx. The first order shift is simply
E(1)
n = −qE〈n|x|n〉 = 0. The second order shift is given by

E(2)
n =

∑
m6=n

q2E2 |〈m|x|n〉|2

En − Em
,

= q2E2 h̄

2mω

(
n

h̄ω
+
n+ 1

−h̄ω

)
,

=
−(qE)2

2mω2
.

This problem can also be solved exactly, which is what is done in part (b).
Using the change of variables suggested: x′ = x − (qE/mω2), we expand
the quadratic potential to see that H(x) = H(x′) − constant. We know
that the energies of H(x′) are just the usual (n + 1/2)h̄ω, evaluating the
constant, we see that ε = 〈H(x)〉 = 〈H(x′)〉−(q2E2/(2mω2)) = (n+1/2)h̄ω−
(q2E2/(2mω2)).
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3. Griffiths 6.12. We can write the problem out as follows

〈1
r
〉 = −4πε0

e2
〈V 〉,

= −4πε0
e2

 2

n2

− m

2h̄2

(
e2

4πε0

)2
 , using the Virial Th,

=
m

n2h̄2

(
e2

4πε0

)
,

=
1

n2a
.

4. Griffiths 6.14 In this problem we need to solve for

E =
−1

8m3c2
〈n|p4|n〉,

=
−m2

32m3c2
〈n|(a+ + a−)4|n〉.

By expanding out (a++a−)4, and keeping only terms that have the same num-

ber of creation and annihilation operators, and using a+|n〉 = i
√

(n+ 1)h̄ω|n+

1〉 and a−|n〉 = −i
√
nh̄ω|n− 1〉, we find that

E =
−3h̄2ω2

32mc2
(2n2 + 2n+ 1).

5. Griffiths 6.25. With a little bit of algebra, you can show that

EFS = −γ
(

3− 8

j + 1/2

)
,

EZ = β(ml + 2ms)

Following the choice of basis used by Griffiths, we use the |jmj〉 basis in
which the HFS perturbation is diagonal. Also on pg. 281, Griffiths is kind
enough to write out this basis in terms of the |lml〉 ⊗ |sms〉 basis in which
our other perturbation Hz is diagonal. So first of all we can immediately
write down the HFS perturbation. For the j = 1/2 we have E = −5γ,
and since we are calculating the −W matrix, we find that for the 1st, 2nd,
6th and 8th diagonal element we get 5γ. The remaining diagonal elements
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have j = 3/2 giving us just γ for the −W matrix. And so we are done
with first perturbation. The second perturbation is diagonal for the first
four wavefunctions since they are both eigenstates in the |jmj〉 basis and the
|lml〉 ⊗ |sms〉 basis. We read off the matrix elements as −β(ml + 2ms) =
−β,+β,−2β,+2β respectively. Notice that

−〈ψ5|Lz + 2Sz|ψ5〉 = −2/3h̄β, −〈ψ6|Lz + 2Sz|ψ6〉 = −1/3h̄β

−〈ψ5|Lz + 2Sz|ψ6〉 = −〈ψ6|Lz + 2Sz|ψ5〉 =
√

2/3h̄β

−〈ψ7|Lz + 2Sz|ψ7〉 = −2/3h̄β, −〈ψ8|Lz + 2Sz|ψ8〉 = −1/3h̄β

−〈ψ8|Lz + 2Sz|ψ7〉 = −〈ψ7|Lz + 2Sz|ψ8〉 =
√

2/3h̄β

Putting all this together, we get the −W matrix as required.

6. Griffiths 6.33. Suppose the Hamiltonian H, for a particular quantum
system, is a function of some parameter λ; let En(λ) and ψn(λ) be the eigen-
values and eigenfunctions of H(λ). The Feynman-Hellman theorem states
that

∂En
∂λ

=

〈
ψn|

∂H

∂λ
|ψn

〉
The effective Hamiltonian for the radial wave functions of hydrogen is

H = − h̄2

2m

d2

dr2
+
h̄2

2m

l(l + 1)

r2
− e2

4πε0

1

r
,

and the eigenvalues are

En = − me4

32π2ε20h̄
2(jmax + l + 1)2

.

(a) Use λ = e in the Feynman-Hellmann theorem to obtain 〈1/r〉. (Griffiths
Equation 6.55)

[First we compute
∂H

∂e
=
−2e

4πε0

1

r

Then 〈
ψn |

∂H

∂e
| ψn

〉
= −2

e

4πε0

〈
ψn |

1

r
| ψn

〉
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According to the Feynman-Hellmann theorem

∂En
∂e

= −2
e

4πε0

〈
ψn |

1

r
| ψn

〉
⇒ 4

e
En = −2

e

4πε0
〈1
r
〉

⇒ 〈1
r
〉 = −2

(
4πε0
e2

)
En

= 2

(
4πε0h̄c

e2

)
1

n2

1

2
mc2

α2

h̄c

= 2
1

n2

1

2

mc2α

h̄c

=
1

an2

where a = h̄c/αmc2 is the Bohr radius.]

(b) Use λ = l to obtain 〈1/r2〉. (Griffiths Equation 6.56) [This time we
have that

∂En
∂l

= 〈∂H
∂l
〉

⇒ −2En
jmax + l + 1

=
(2l + 1)h̄2

2m
〈 1

r2
〉

⇒ 〈 1

r2
〉 = −2En

2m

(2l + 1)h̄2

1

jmax + l + 1

Since

En
m

h̄2 = − 1

n2

1

2
αmc2

m

h̄2 = − 1

2n2

1

a2

we have that

〈 1

r2
〉 =

1

a2

2

(2l + 1)

1

(jmax + l + 1)3
]

7. Griffiths 6.36. In this problem we examine the Stark effect for n = 1
and n = 2. With the electric field in the z-direction, the Hamiltonian is

Hs = −eEextz = −eEextr cos θ,

We will treat this as a perturbation to the Bohr Hamiltonian.
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(a) To first order, the change in the ground state is given by

Es = 〈100|Hs|100〉,

= (const)
∫

exp(−2r/a)r3dr
∫ 1

−1
cos θ d(cos θ) = 0

(b) Lets define the states that we will work with

|1〉 = ψ200 =

√
1

2πa

1

2a

(
1− r

2a

)
exp

(−r
2a

)
,

|2〉 = ψ211 = −
√

1

πa

1

8a2
r exp

(−r
2a

)
sin θeiφ,

|3〉 = ψ210 =

√
1

2πa

1

4a2
r exp

(−r
2a

)
cos θ,

|4〉 = ψ21−1 =

√
1

πa

1

8a2
r exp

(−r
2a

)
sin θe−iφ.

We need to compute the W -matrix
W11 W12 W13 W14

W21 W22 W23 W24

W31 W32 W33 W34

W41 W42 W43 W44

 =


〈1 | H ′S | 1〉 〈1 | H ′S | 2〉 〈1 | H ′S | 3〉 〈1 | H ′S | 4〉
〈2 | H ′S | 1〉 〈2 | H ′S | 2〉 〈2 | H ′S | 3〉 〈2 | H ′S | 4〉
〈3 | H ′S | 1〉 〈3 | H ′S | 2〉 〈3 | H ′S | 3〉 〈3 | H ′S | 4〉
〈4 | H ′S | 1〉 〈4 | H ′S | 2〉 〈4 | H ′S | 3〉 〈4 | H ′S | 4〉


Either by direct calculation or by inspection, convince yourself that
the only non-zero terms are 〈1|H ′s|3〉 = 〈3|H ′s|1〉, which we proceed to
calculate.

〈1|H ′s|3〉 = −eEext
∫ 1

2πa

1

8a3

(
1− r

2a

)
r exp

(−r
a

)
cos θ(r cos θ)r2 dr dΩ,

=
−eEext

8a4

(∫ ∞
0

(
1− r

2a

)
r4 exp(−r/a) dr

)(∫ 1

−1
cos2 θ (d cos θ)

)
,

= −eaEext
12

(Γ(5)− Γ(6)/2),

= −3eaEext.

Then

W = −3eaEext


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0


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The eigenvalues are ±3eaEext so when the perturbation is turned on
the degeneracy is split into 3 different energies, E0

2 , E
0
2 ± 3eaEext.

(c) The ”good” wave functions are formed from the eigenvectors of the
W -matrix

ψ1 =
1√
2


1
0
1
0

 and ψ3 =
1√
2


1
0
−1
0


The four good wave functions are

ψ1 =
1√
2

(ψ200 + ψ210)

ψ2 = ψ211

ψ3 =
1√
2

(ψ200 − ψ210)

ψ4 = ψ21−1

(d) The dipole moment pe = −er = −er(sin θ cosφî+ sin θ sinφĵ+ cos θk̂).
The φ integral for the expectation value of the x and y components will
give zero for all four states. The expectation value of the z component
can be constructed from the elements of the W matrix.

〈ψ1 | pe | ψ1〉 =
1

2
(W13 +W31) = 3aek̂

〈ψ2 | pe | ψ2〉 = 0

〈ψ3 | pe | ψ3〉 = −1

2
(W13 +W31) = −3aek̂

〈ψ4 | pe | ψ4〉 = 0

8. Positronium. We can rewrite our two perturbations in a more trans-
parent form. Using S2 = S2

1 +S2
2 + 2S1.S2 and defining β = eB/mc, we have

our two perturbations of the form:

HHFS =
α

2

(
s(s+ 1)− 3

2

)
,

HB = β(s1z − s2z).
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Following the method in the previous problem we have:

W =


|11〉 |10〉 |1− 1〉 |00〉
α/4 0 0 0 |11〉

0 α/4 0 β |10〉
0 0 α/4 0 |1− 1〉
0 β 0 −3α/4 |00〉


By diagonalizing this matrix we find the following

E(ψ1) = E0 + α/4

E(ψ3) = E0 + α/4

E(ψ+) = E0 −
α

4
+

1

2

√
α2 + 4β2

E(ψ−) = E0 −
α

4
− 1

2

√
α2 + 4β2

Please check that in the limit α → 0, we get the correct splitting where the
four fold degeneracy is broken by one level increasing by β and one decreasing
by β, while the other two remain the same, while for the opposite limit β → 0,
we have the singlet-triplet splitting with three levels increasing in energy by
α/4 and the singlet shift its energy by −3α/4.
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