Physics 443, Solutions to PS 9

1. Griffiths 5.35. Using the assumption that the volume of the star is
V = 47 R3/3, we can plug this into the equation for the total energy to get
that
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We also have that the gravitational energy is given by
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We can add these two to get the total energy. The condition we are looking
for is when dE/dR = 0. Plugging in and solving for R we find that
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Substituting for numerical values, we get that R = 7.58x10**N~/3. Using
that the mass of the sun M, = 2x10%° Kg, we have that R = 7.16x10°
meters. For the last part, we know that the Fermi energy is given by

(R?/2m) (972 Nq/ (47 R3))?/3. This is about 0.194Mev, which is approaching
the rest mass of the electron my = 0.5Mev.

2. Griffiths 6.5. In this problem we have the harmonic oscillator problem
with a perturbation of the form H = —qFx. The first order shift is simply
EW = —qE{(n|z|n) = 0. The second order shift is given by
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This problem can also be solved exactly, which is what is done in part (b).
Using the change of variables suggested: 2’ = z — (¢FE/mw?), we expand
the quadratic potential to see that H(x) = H(z') — constant. We know
that the energies of H(z') are just the usual (n + 1/2)hw, evaluating the
constant, we see that € = (H(x)) = (H(z'))—(¢*E?/(2mw?)) = (n+1/2)hiw—
(q*E?/(2mw?)).



3. Griffiths 6.12. We can write the problem out as follows
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4. Griffiths 6.14 In this problem we need to solve for
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By expanding out (a,+a_)?, and keeping only terms that have the same num-
ber of creation and annihilation operators, and using a|n) = i,/(n + 1)hw|n+
1) and a_|n) = —ivnhw|n — 1), we find that

o —3h%w?

2
= o (2n° +2n+1).

5. Griffiths 6.25. With a little bit of algebra, you can show that
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Following the choice of basis used by Griffiths, we use the |jm;) basis in
which the Hpg perturbation is diagonal. Also on pg. 281, Griffiths is kind
enough to write out this basis in terms of the |lm;) ® |sms) basis in which
our other perturbation H, is diagonal. So first of all we can immediately
write down the Hpg perturbation. For the j = 1/2 we have £ = —b,
and since we are calculating the —W matrix, we find that for the 1st, 2nd,
6th and 8th diagonal element we get 5y. The remaining diagonal elements
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have 7 = 3/2 giving us just 7 for the —WW matrix. And so we are done
with first perturbation. The second perturbation is diagonal for the first
four wavefunctions since they are both eigenstates in the |jm;) basis and the
|lm;) ® |sms) basis. We read off the matrix elements as —F(m; + 2m;) =
—0,4+3, =203, +23 respectively. Notice that

—(¥s|L. + 28 [ps) = —2/303, —(s|L. + 2S.|¢6) = —1/3h3
—(¥s|L + 28.[tb6) = —(W6| L= +2S.|tb5) = v'2/30
—(r|L. + 28 [br) = =2/308, —(s|L. + 2S.|¢s) = —1/3h3
— (s L + 28:|47) = —(1hq| L. + 28.|ubs) = V/2/3h3

Putting all this together, we get the —W matrix as required.

6. Griffiths 6.33. Suppose the Hamiltonian H, for a particular quantum
system, is a function of some parameter A; let £, ()) and ,,(A) be the eigen-
values and eigenfunctions of H(A). The Feynman-Hellman theorem states
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The effective Hamiltonian for the radial wave functions of hydrogen is
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and the eigenvalues are
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(a) Use A = ein the Feynman-Hellmann theorem to obtain (1/r). (Griffiths
Equation 6.55)

[First we compute
OH  —2el
de  dmeyr

OH
(v G l0n) = =2

Then

(n 1~ 1)

e
47reg



According to the Feynman-Hellmann theorem
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where a = fic/amc? is the Bohr radius.|

(b) Use A = [ to obtain (1/r?). (Griffiths Equation 6.56) [This time we

have that
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7. Griffiths 6.36. In this problem we examine the Stark effect for n = 1
and n = 2. With the electric field in the z-direction, the Hamiltonian is

H, = —eE.;z = —eFE,rcosb,

We will treat this as a perturbation to the Bohr Hamiltonian.
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(a) To first order, the change in the ground state is given by
Es = (100|H,|100),
1
= (const)/exp(—Qr/a)r3d7"/ cosf d(cosf) =0

1

(b) Lets define the states that we will work with
1) = thoo = \/gzla (1 — 22) exp (;Z;) ,
2) = ton = —\/ES;T exp (;;) sin fe™?
3) = 0= \/;4;7‘ exp <;:> cos b,
4) = Yo = \/g8i2rexp <;;> sin fe ™.

We need to compute the W-matrix

Wi Wiy Wiz Wiy (1| Hg |1) (1| Hg|2) (1]Hs|3) (1|Hg[4)
War Wy Was W | | 2| Hg | 1) (2| Hg|2) (2] Hg[3) (2] Hg|4)
War Wiy Wiz Wi (3| Hg | 1) (3| Hg|2) (3[Hg|3) (3]Hs|4)
Wi Wi Wi Wy (4| Hg [ 1) (4] Hg[2) (4[Hg|3) (4]Hg|4)
Either by direct calculation or by inspection, convince yourself that
the only non-zero terms are (1|H.|3) = (3|H.|1), which we proceed to
calculate.
1 1 r -r
G = b [ L L (1 ) e () s e at,
(1|H,|3) et | 523 5, )T exp | — | cos O(rcos@)re dr d
—eFE,, oo 1
= Za4 L </0 <1 - 22) rtexp(—r/a) dr) </_1 cos® 0 (d cos 6’)) :
eakF,,
= e e) o) 2),
= —3eal..;.
Then
0 01 0
0 0 0 O
W = —3ealy 100 0
0000



The eigenvalues are +3eaF,,; so when the perturbation is turned on
the degeneracy is split into 3 different energies, EY, EY + 3eaFey.

(¢) The "good” wave functions are formed from the eigenvectors of the

W -matrix
1 1
1 0 1 0
= — and = —
¢1 \/§ 1 ¢3 \/§ _1
0 0

The four good wave functions are

U = \}5(@/1200‘1‘1#210)

o = Uon
w?) = \/1§(wQOO - w210)
Yy = o1

(d) The dipole moment p, = —er = —er(sin 6 cos ¢i + sin 0 sin ¢y + cos Ok).
The ¢ integral for the expectation value of the z and y components will
give zero for all four states. The expectation value of the z component
can be constructed from the elements of the W matrix.

(1| pe | n) = 5(Wis + Win) = ach
(o po | v) = 0

(s | De | Us) = —5(Wis + W) = —Back
(i pe| ) = 0

8. Positronium. We can rewrite our two perturbations in a more trans-
parent form. Using S? = S? + 5% 4+ 25.5; and defining 3 = eB/mc, we have
our two perturbations of the form:

o' 3
HHFS = 2(5(8"‘1)—2),

Hp = pB(s12 — 522).



Following the method in the previous problem we have:

111) |10 |1—1) |00)
a/f 0 0 0 11)
W=| 0 a/4 0 3 110)
0 0 /M 0 |j1-1)
0 g 0  —3a/4| |00)

By diagonalizing this matrix we find the following

E(¢1) = EO —|— (1//4
E(3) = Eo +a/4

E(s) = Eo — % + ;\/oﬂ + 4/
() = By~ — \Ja? + 47

Please check that in the limit o — 0, we get the correct splitting where the
four fold degeneracy is broken by one level increasing by (5 and one decreasing
by (3, while the other two remain the same, while for the opposite limit 5 — 0,
we have the singlet-triplet splitting with three levels increasing in energy by
a/4 and the singlet shift its energy by —3a/4.



