QM1 Problem Set 1 solutions — Mike Saelim

If you find any errors with these solutions, please email me at mjs496Qcornell.edu.

(a) We can assume that the function is smooth enough to Taylor expand:
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The rest is a straightforward evaluation, using the property Ala) = ala):
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(b) Since the operator can be written as a diagonal matrix of its eigenvalues, A =) ala)(al,
the determinant is simply the product of all these eigenvalues.
The trace of the logarithm of the operator is

TrinA = Z<a| In Ala) = Zlna,

so taking the exponential of that gives

exp(Trln A) = exp(z Ina) = H a = det A.

(c) 4 is unitary if €4 (e?4)T = 1, where 1 is the identity operator. To show this, let’s decompose
the exponentials into their spectral decompositions.

The spectral decomposition of any function f(A) is >, f(a)|a)(a|, which can be reasoned out
from what we proved in part (a). (You can also compute it out directly by replacing A with its
spectral decomposition in the Taylor expansion of f(A).) So,
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Putting these together,
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Alternatively, given that we showed (e!4)T = e7*4, we could just say that ¢4(e*)t = etde=i4 =
0

e’ = 1, but we would have to specify that we can only combine the two exponentials naively
because their arguments commute. (eXe¥ = eX*Y is not true if [X,Y] # 0.)



I find it easiest to start with the right-hand side and work to the left-hand side of this
equation. We can even use our friends the Taylor expansion and spectral decomposition again.
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= U*1 > AU = U*lf( )U.

(a) Calculating e7? involves using the Taylor expansion of the exponential, which will

necessitate calculating (7 - #)%. One way to do this is by brute force. If we let A = (ng,ny, n,),
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since 71 is a unit vector. Thus, factors of (7 - &)™ will simply alternate between the identity matrix
and N - .
The other way to do this is to cheat (sorta) and use the identity you prove in part (b).
(h-&)? = (~-n)-1+iF- (A x7)=1.
Either way,
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where the bold 1 signifies the 2x2 identity matrix.

(b) The quickest way to prove this identity is to use two identities that define the Pauli matrices:

04, 0;] = Z%zgkak {oi,05} =20i; -1
Then,
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(a) Again with the Taylor expansions:
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Or, this can also be done with the definition of the derivative, extended to functions of operators:
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but one must be careful to specify that you can split e@T9E into e*BeB only because 2B and eB
commute.

(b) This will require us to use the definition of the derivative, as well as a Taylor expansion of
the operators A(x) and B(z):
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(c) This relies on the identity in part (b). Since AA~! =1,
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Photon Filters

The linear polarizer can be represented by a matrix that picks out the component of the photon’s
state vector that is parallel to the axis rotated by « from the x-axis. In the x-y basis, it takes the
x and y components of the input state vector, and spits out the x and y components of the output
state vector. We can do this by rotating the state vector by —ca, picking out its x-component, and
rotating the result back by a:
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What does the matrix look like if we have it take in and spit out R and L components instead?

One way is to transform P5? with the matrices that transform the components of the state vector.
The prompt gives us the transformation for the basis states:
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However, the components of the state vector will actually transform with U*:
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So, to transform P, into a matrix that transforms between R-L. components, we use the U* matrix

that transforms x-y components into R-L components, and its inverse U’ that transforms R-L
components into x-y components:
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Another way, which pretty much does the same thing but avoids the confusion over what matrix

to use, involves playing with bras and kets. Notice that P, = |a)(a| where |a) = cos a|z) + sin ay)
in the x-y basis. We can transform this to the R-L basis:
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Using this |a), P, gives the same result.
We can do a similar transformation from Q%Y to Q®" to account for the behavior of the quarter-
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wave plate.
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Now let’s consider the combination QP /4. Plugging and chugging,
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So, we can summarize the effects of this system in a table:

Input Output Transmission probability = |Output|?

) 3IR) 3
) 3IR) 3
|R) 0 0
L) |R) 1

This filter blocks right-circularly polarized light, and turns left-circularly polarized light into right-
circularly polarized light.



Indeed, this fits with what we would expect Q Py /4 Q) to do. We've set the fast and slow axes
of our quarter wave plates to be parallel to the x and y axes, so light linearly polarized parallel
to the x and y axes will be unaffected by the first quarter-wave plate: the plate cannot induce a
shift between two components if only one is present. Then, it is halved in intensity by the 45°
linear polarizer, and turned into circularly-polarized light by the second quarter-wave plate. The
first quarter-wave plate will also shift left-circularly polarized light into linearly polarized light
parallel to the axis of the linear polarizer, while it shifts right-circularly polarized light into linearly
polarized light perpendicular to that axis.

@ Sakurai 1.7
Since we can decompose any state into a linear combination of eigenstates of A, |a) =) c4|a),
let’s consider these operators’ effects on eigenstates first.

(a) For some eigenstate |a),
[[(A-a)a) =](a~d)a)

which equals 0 because of the term a’ = a. Since this holds for all the eigenstates, the operator
will return 0 for any state.

(b) For some eigenstate |a),

a//¢a/
We have two possible cases: either a = @’ and all the terms will be 1, or a # a’, and one term will
have 0 in the numerator. So,
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is the projection operator. Note that this is only possible if the states are nondegenerate, because
if two different states have the same eigenvalue, the product will have 0/0 for one of its terms.
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(c) The null operator,

will return 0 for either state.
The projection operator for S, — —%,

will return |—%/2) when acting on |—%/2) and 0 when acting on |h/2).



