
QM1 Problem Set 1 solutions — Mike Saelim

If you find any errors with these solutions, please email me at mjs496@cornell.edu.

1 (a) We can assume that the function is smooth enough to Taylor expand:

f(A) =
∑
n

cnA
n.

The rest is a straightforward evaluation, using the property A|a〉 = a|a〉:

〈a|f(A)|a′〉 =
∑
n

cn〈a|An|a′〉 =
∑
n

cn〈a|a′n|a′〉

=
∑
n

cna
′n〈a|a′〉 = f(a′)δaa′ .

(b) Since the operator can be written as a diagonal matrix of its eigenvalues, A =
∑

a a|a〉〈a|,
the determinant is simply the product of all these eigenvalues.

The trace of the logarithm of the operator is

Tr lnA =
∑
a

〈a| lnA|a〉 =
∑
a

ln a,

so taking the exponential of that gives

exp(Tr lnA) = exp(
∑
a

ln a) =
∏
a

a = detA.

(c) eiA is unitary if eiA(eiA)† = 1, where 1 is the identity operator. To show this, let’s decompose
the exponentials into their spectral decompositions.

The spectral decomposition of any function f(A) is
∑

a f(a)|a〉〈a|, which can be reasoned out
from what we proved in part (a). (You can also compute it out directly by replacing A with its
spectral decomposition in the Taylor expansion of f(A).) So,

eiA =
∑
a

eia|a〉〈a|

(eiA)† =
∑
a

(eia|a〉〈a|)† =
∑
a

e−ia|a〉〈a|.

Putting these together,

eiA(eiA)† =
∑
a

∑
b

eiae−ib|a〉〈a|b〉〈b| =
∑
a

∑
b

eiae−ib|a〉δab〈b|

=
∑
a

|a〉〈a| = 1.

Alternatively, given that we showed (eiA)† = e−iA, we could just say that eiA(eiA)† = eiAe−iA =
e0 = 1, but we would have to specify that we can only combine the two exponentials naively
because their arguments commute. (eXeY = eX+Y is not true if [X,Y ] 6= 0.)
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2 I find it easiest to start with the right-hand side and work to the left-hand side of this
equation. We can even use our friends the Taylor expansion and spectral decomposition again.

f(U−1AU) =
∑
n

cn(U−1AU)n =
∑
n

cnU
−1AUU−1AUU−1AU . . . U−1AU

= U−1
∑
n

cnA
nU = U−1f(A)U.

3 (a) Calculating ein̂·~σφ involves using the Taylor expansion of the exponential, which will

necessitate calculating (n̂ · ~σ)2. One way to do this is by brute force. If we let n̂ = (nx, ny, nz),

n̂ · ~σ =

(
nz nx − iny

nx + iny −nz

)
(n̂ · ~σ)2 =

(
n2
x + n2

y + n2
z 0

0 n2
x + n2

y + n2
z

)
=

(
1 0
0 1

)
since n̂ is a unit vector. Thus, factors of (n̂ · ~σ)n will simply alternate between the identity matrix
and n̂ · ~σ.

The other way to do this is to cheat (sorta) and use the identity you prove in part (b).

(n̂ · ~σ)2 = (n̂ · n̂) · 1 + i~σ · (n̂× n̂) = 1.

Either way,

ei(n̂·~σ)φ = 1 + i(n̂ · ~σ)φ− 1

2
(n̂ · ~σ)2φ2 − i

3!
(n̂ · ~σ)3φ3 + . . .

= 1 + i(n̂ · ~σ)φ− 1

2
1φ2 − 1

3!
i(n̂ · ~σ)3φ3 + . . .

= cosφ · 1 + i(n̂ · ~σ) sinφ

where the bold 1 signifies the 2x2 identity matrix.

(b) The quickest way to prove this identity is to use two identities that define the Pauli matrices:

[σi, σj ] =
∑
k

2iεijkσk {σi, σj} = 2δij · 1.

Then,

(~a · ~σ)(~b · ~σ) =
∑
ij

aibjσiσj =
∑
ij

aibj

(
1

2
{σi, σj}+

1

2
[σi, σj ]

)

=
∑
ij

aibj

(
δij · 1 +

∑
k

iεijkσk

)
= ~a ·~b · 1 + i~σ · ~a×~b.

4 (a) Again with the Taylor expansions:

dexB

dx
=

d

dx

(
1 + xB +

1

2
x2B2 +

1

3!
x3B3 + . . .

)
= B + xB2 +

1

2
x2B3 + . . . = B exB.
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Or, this can also be done with the definition of the derivative, extended to functions of operators:

dexB

dx
= lim

ε→0

1

ε
[e(x+ε)B − exB]

= exB lim
ε→0

1

ε
[eεB − 1]

= exB lim
ε→0

1

ε

[
εB +

1

2
ε2B2 + . . .

]
= B exB

but one must be careful to specify that you can split e(x+ε)B into exBeεB only because xB and εB
commute.

(b) This will require us to use the definition of the derivative, as well as a Taylor expansion of
the operators A(x) and B(x):

dAB

dx
= lim

ε→0

1

ε
[A(x+ ε)B(x+ ε)−A(x)B(x)]

= lim
ε→0

1

ε

[(
A(x) + ε

dA(x)

dx
+O(ε2)

)(
B(x) + ε

dB(x)

dx
+O(ε2)

)
−A(x)B(x)

]
= lim

ε→0

1

ε

[
A(x)B(x) + ε

dA(x)

dx
B(x) + εA(x)

dB(x)

dx
+O(ε2)−A(x)B(x)

]
= A′B +AB′.

(c) This relies on the identity in part (b). Since AA−1 = 1,

d

dx
(AA−1) =

dA

dx
A−1 +A

dA−1

dx
= 0

=⇒ dA−1

dx
= −A−1dA

dx
A−1.

5 Photon Filters
The linear polarizer can be represented by a matrix that picks out the component of the photon’s

state vector that is parallel to the axis rotated by α from the x-axis. In the x-y basis, it takes the
x and y components of the input state vector, and spits out the x and y components of the output
state vector. We can do this by rotating the state vector by −α, picking out its x-component, and
rotating the result back by α:

P xyα =

(
cosα − sinα
sinα cosα

)(
1 0
0 0

)(
cosα sinα
− sinα cosα

)
=

(
cos2 α sinα cosα

sinα cosα sin2 α

)
.

What does the matrix look like if we have it take in and spit out R and L components instead?
One way is to transform P xyα with the matrices that transform the components of the state vector.
The prompt gives us the transformation for the basis states:(

|R〉
|L〉

)
= U

(
|x〉
|y〉

)
U =

1√
2

(
1 i
1 −i

)
.
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However, the components of the state vector will actually transform with U∗:

|ξ〉 =
(
ξx ξy

)(|x〉
|y〉

)
=
(
ξx ξy

)
U †U

(
|x〉
|y〉

)
=
(
ξR ξL

)(|R〉
|L〉

)
=⇒

(
ξR ξL

)
=
(
ξx ξy

)
U †

=⇒
(
ξR
ξL

)
= U∗

(
ξx
ξy

)
So, to transform Pα into a matrix that transforms between R-L components, we use the U∗ matrix
that transforms x-y components into R-L components, and its inverse UT that transforms R-L
components into x-y components:

PRLα = U∗ P xyα UT

=
1√
2

(
1 −i
1 i

)(
cos2 α sinα cosα

sinα cosα sin2 α

)
1√
2

(
1 1
i −i

)
=

1

2

(
1 e−2iα

e2iα 1

)
.

Another way, which pretty much does the same thing but avoids the confusion over what matrix
to use, involves playing with bras and kets. Notice that Pα = |α〉〈α| where |α〉 = cosα|x〉+ sinα|y〉
in the x-y basis. We can transform this to the R-L basis:

|α〉 = cosα
1√
2

(|R〉+ |L〉) + sinα
−i√

2
(|R〉 − |L〉)

=
1√
2

(e−iα|R〉+ eiα|L〉).

Using this |α〉, Pα gives the same result.
We can do a similar transformation from Qxy to QRL to account for the behavior of the quarter-

wave plate.

Qxy =

(
1 0
0 i

)
=⇒ QRL = U∗ Qxy UT =

1

2

(
1 + i 1− i
1− i 1 + i

)
=

1√
2

(
eiπ/4 e−iπ/4

e−iπ/4 eiπ/4

)
.

Now let’s consider the combination QPπ/4Q. Plugging and chugging,

(QPπ/4Q)xy =
1

2

(
1 i
i −1

)
(QPπ/4Q)RL =

(
0 1
0 0

)
So, we can summarize the effects of this system in a table:

Input Output Transmission probability = |Output|2
|x〉 1

2 |R〉
1
2

|y〉 i
2 |R〉

1
2

|R〉 0 0
|L〉 |R〉 1

This filter blocks right-circularly polarized light, and turns left-circularly polarized light into right-
circularly polarized light.
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Indeed, this fits with what we would expect QPπ/4Q to do. We’ve set the fast and slow axes
of our quarter wave plates to be parallel to the x and y axes, so light linearly polarized parallel
to the x and y axes will be unaffected by the first quarter-wave plate: the plate cannot induce a
shift between two components if only one is present. Then, it is halved in intensity by the 45◦

linear polarizer, and turned into circularly-polarized light by the second quarter-wave plate. The
first quarter-wave plate will also shift left-circularly polarized light into linearly polarized light
parallel to the axis of the linear polarizer, while it shifts right-circularly polarized light into linearly
polarized light perpendicular to that axis.

6 Sakurai 1.7
Since we can decompose any state into a linear combination of eigenstates of A, |α〉 =

∑
a ca|a〉,

let’s consider these operators’ effects on eigenstates first.

(a) For some eigenstate |a〉, ∏
a′

(A− a′)|a〉 =
∏
a′

(a− a′)|a〉

which equals 0 because of the term a′ = a. Since this holds for all the eigenstates, the operator
will return 0 for any state.

(b) For some eigenstate |a〉,∏
a′′ 6=a′

(A− a′′)
(a′ − a′′)

|a〉 =
∏
a′′ 6=a′

(a− a′′)
(a′ − a′′)

|a〉.

We have two possible cases: either a = a′ and all the terms will be 1, or a 6= a′, and one term will
have 0 in the numerator. So, ∏

a′′ 6=a′

(A− a′′)
(a′ − a′′)

= |a′〉〈a′|,

is the projection operator. Note that this is only possible if the states are nondegenerate, because
if two different states have the same eigenvalue, the product will have 0/0 for one of its terms.

(c) The null operator, ∏
a′

(Sz − a′) =

(
Sz +

h̄

2

)(
Sz −

h̄

2

)
,

will return 0 for either state.
The projection operator for Sz → − h̄

2 ,

∏
a′′ 6=−h̄/2

(Sz − a′′)
(− h̄

2 − a′′)
=

1

2
− Sz

h̄
,

will return |−h̄/2〉 when acting on |−h̄/2〉 and 0 when acting on |h̄/2〉.

5


