QM1 Problem Set 1 solutions - Mike Saelim

If you find any errors with these solutions, please email me at mjs496@cornell.edu.
1 (a) We can assume that the function is smooth enough to Taylor expand:

$$
f(A)=\sum_{n} c_{n} A^{n}
$$

The rest is a straightforward evaluation, using the property $A|a\rangle=a|a\rangle$:

$$
\begin{aligned}
\langle a| f(A)\left|a^{\prime}\right\rangle & =\sum_{n} c_{n}\langle a| A^{n}\left|a^{\prime}\right\rangle=\sum_{n} c_{n}\langle a| a^{\prime n}\left|a^{\prime}\right\rangle \\
& =\sum_{n} c_{n} a^{\prime n}\left\langle a \mid a^{\prime}\right\rangle=f\left(a^{\prime}\right) \delta_{a a^{\prime}}
\end{aligned}
$$

(b) Since the operator can be written as a diagonal matrix of its eigenvalues, $A=\sum_{a} a|a\rangle\langle a|$, the determinant is simply the product of all these eigenvalues.

The trace of the logarithm of the operator is

$$
\operatorname{Tr} \ln A=\sum_{a}\langle a| \ln A|a\rangle=\sum_{a} \ln a
$$

so taking the exponential of that gives

$$
\exp (\operatorname{Tr} \ln A)=\exp \left(\sum_{a} \ln a\right)=\prod_{a} a=\operatorname{det} A
$$

(c) $e^{i A}$ is unitary if $e^{i A}\left(e^{i A}\right)^{\dagger}=\mathbf{1}$, where $\mathbf{1}$ is the identity operator. To show this, let's decompose the exponentials into their spectral decompositions.

The spectral decomposition of any function $f(A)$ is $\sum_{a} f(a)|a\rangle\langle a|$, which can be reasoned out from what we proved in part (a). (You can also compute it out directly by replacing A with its spectral decomposition in the Taylor expansion of $f(A)$.) So,

$$
\begin{aligned}
e^{i A} & =\sum_{a} e^{i a}|a\rangle\langle a| \\
\left(e^{i A}\right)^{\dagger} & =\sum_{a}\left(e^{i a}|a\rangle\langle a|\right)^{\dagger}=\sum_{a} e^{-i a}|a\rangle\langle a|
\end{aligned}
$$

Putting these together,

$$
\begin{aligned}
e^{i A}\left(e^{i A}\right)^{\dagger} & =\sum_{a} \sum_{b} e^{i a} e^{-i b}|a\rangle\langle a \mid b\rangle\langle b|=\sum_{a} \sum_{b} e^{i a} e^{-i b}|a\rangle \delta_{a b}\langle b| \\
& =\sum_{a}|a\rangle\langle a|=\mathbf{1}
\end{aligned}
$$

Alternatively, given that we showed $\left(e^{i A}\right)^{\dagger}=e^{-i A}$, we could just say that $e^{i A}\left(e^{i A}\right)^{\dagger}=e^{i A} e^{-i A}=$ $e^{\mathbf{0}}=\mathbf{1}$, but we would have to specify that we can only combine the two exponentials naively because their arguments commute. $\left(e^{X} e^{Y}=e^{X+Y}\right.$ is not true if $[X, Y] \neq 0$.)

2 I find it easiest to start with the right-hand side and work to the left-hand side of this equation. We can even use our friends the Taylor expansion and spectral decomposition again.

$$
\begin{aligned}
f\left(U^{-1} A U\right) & =\sum_{n} c_{n}\left(U^{-1} A U\right)^{n}=\sum_{n} c_{n} U^{-1} A U U^{-1} A U U^{-1} A U \ldots U^{-1} A U \\
& =U^{-1} \sum_{n} c_{n} A^{n} U=U^{-1} f(A) U .
\end{aligned}
$$

3 (a) Calculating $e^{i \hat{n} \cdot \vec{\sigma} \phi}$ involves using the Taylor expansion of the exponential, which will necessitate calculating $(\hat{n} \cdot \vec{\sigma})^{2}$. One way to do this is by brute force. If we let $\hat{n}=\left(n_{x}, n_{y}, n_{z}\right)$,

$$
\begin{aligned}
\hat{n} \cdot \vec{\sigma} & =\left(\begin{array}{cc}
n_{z} & n_{x}-i n_{y} \\
n_{x}+i n_{y} & -n_{z}
\end{array}\right) \\
(\hat{n} \cdot \vec{\sigma})^{2} & =\left(\begin{array}{cc}
n_{x}^{2}+n_{y}^{2}+n_{z}^{2} & 0 \\
0 & n_{x}^{2}+n_{y}^{2}+n_{z}^{2}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

since \hat{n} is a unit vector. Thus, factors of $(\hat{n} \cdot \vec{\sigma})^{n}$ will simply alternate between the identity matrix and $\hat{n} \cdot \vec{\sigma}$.

The other way to do this is to cheat (sorta) and use the identity you prove in part (b).

$$
(\hat{n} \cdot \vec{\sigma})^{2}=(\hat{n} \cdot \hat{n}) \cdot \mathbf{1}+i \vec{\sigma} \cdot(\hat{n} \times \hat{n})=\mathbf{1} .
$$

Either way,

$$
\begin{aligned}
e^{i(\hat{n} \cdot \vec{\sigma}) \phi} & =\mathbf{1}+i(\hat{n} \cdot \vec{\sigma}) \phi-\frac{1}{2}(\hat{n} \cdot \vec{\sigma})^{2} \phi^{2}-\frac{i}{3!}(\hat{n} \cdot \vec{\sigma})^{3} \phi^{3}+\ldots \\
& =\mathbf{1}+i(\hat{n} \cdot \vec{\sigma}) \phi-\frac{1}{2} \mathbf{1} \phi^{2}-\frac{1}{3!} i(\hat{n} \cdot \vec{\sigma})^{3} \phi^{3}+\ldots \\
& =\cos \phi \cdot \mathbf{1}+i(\hat{n} \cdot \vec{\sigma}) \sin \phi
\end{aligned}
$$

where the bold 1 signifies the 2 x 2 identity matrix.
(b) The quickest way to prove this identity is to use two identities that define the Pauli matrices:

$$
\left[\sigma_{i}, \sigma_{j}\right]=\sum_{k} 2 i \varepsilon_{i j k} \sigma_{k} \quad\left\{\sigma_{i}, \sigma_{j}\right\}=2 \delta_{i j} \cdot \mathbf{1}
$$

Then,

$$
\begin{aligned}
(\vec{a} \cdot \vec{\sigma})(\vec{b} \cdot \vec{\sigma}) & =\sum_{i j} a_{i} b_{j} \sigma_{i} \sigma_{j}=\sum_{i j} a_{i} b_{j}\left(\frac{1}{2}\left\{\sigma_{i}, \sigma_{j}\right\}+\frac{1}{2}\left[\sigma_{i}, \sigma_{j}\right]\right) \\
& =\sum_{i j} a_{i} b_{j}\left(\delta_{i j} \cdot \mathbf{1}+\sum_{k} i \varepsilon_{i j k} \sigma_{k}\right)=\vec{a} \cdot \vec{b} \cdot \mathbf{1}+i \vec{\sigma} \cdot \vec{a} \times \vec{b}
\end{aligned}
$$

4 (a) Again with the Taylor expansions:

$$
\begin{aligned}
\frac{d e^{x B}}{d x} & =\frac{d}{d x}\left(1+x B+\frac{1}{2} x^{2} B^{2}+\frac{1}{3!} x^{3} B^{3}+\ldots\right) \\
& =B+x B^{2}+\frac{1}{2} x^{2} B^{3}+\ldots=B e^{x B}
\end{aligned}
$$

Or, this can also be done with the definition of the derivative, extended to functions of operators:

$$
\begin{aligned}
\frac{d e^{x B}}{d x} & =\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left[e^{(x+\epsilon) B}-e^{x B}\right] \\
& =e^{x B} \lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left[e^{\epsilon B}-1\right] \\
& =e^{x B} \lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left[\epsilon B+\frac{1}{2} \epsilon^{2} B^{2}+\ldots\right] \\
& =B e^{x B}
\end{aligned}
$$

but one must be careful to specify that you can split $e^{(x+\epsilon) B}$ into $e^{x B} e^{\epsilon B}$ only because $x B$ and ϵB commute.
(b) This will require us to use the definition of the derivative, as well as a Taylor expansion of the operators $A(x)$ and $B(x)$:

$$
\begin{aligned}
\frac{d A B}{d x} & =\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}[A(x+\epsilon) B(x+\epsilon)-A(x) B(x)] \\
& =\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left[\left(A(x)+\epsilon \frac{d A(x)}{d x}+O\left(\epsilon^{2}\right)\right)\left(B(x)+\epsilon \frac{d B(x)}{d x}+O\left(\epsilon^{2}\right)\right)-A(x) B(x)\right] \\
& =\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left[A(x) B(x)+\epsilon \frac{d A(x)}{d x} B(x)+\epsilon A(x) \frac{d B(x)}{d x}+O\left(\epsilon^{2}\right)-A(x) B(x)\right] \\
& =A^{\prime} B+A B^{\prime} .
\end{aligned}
$$

(c) This relies on the identity in part (b). Since $A A^{-1}=\mathbf{1}$,

$$
\begin{aligned}
\frac{d}{d x}\left(A A^{-1}\right) & =\frac{d A}{d x} A^{-1}+A \frac{d A^{-1}}{d x}=0 \\
\Longrightarrow \frac{d A^{-1}}{d x} & =-A^{-1} \frac{d A}{d x} A^{-1} .
\end{aligned}
$$

5 Photon Filters

The linear polarizer can be represented by a matrix that picks out the component of the photon's state vector that is parallel to the axis rotated by α from the x -axis. In the $\mathrm{x}-\mathrm{y}$ basis, it takes the x and y components of the input state vector, and spits out the x and y components of the output state vector. We can do this by rotating the state vector by $-\alpha$, picking out its x -component, and rotating the result back by α :

$$
P_{\alpha}^{x y}=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right)=\left(\begin{array}{cc}
\cos ^{2} \alpha & \sin \alpha \cos \alpha \\
\sin \alpha \cos \alpha & \sin ^{2} \alpha
\end{array}\right) .
$$

What does the matrix look like if we have it take in and spit out R and L components instead? One way is to transform $P_{\alpha}^{x y}$ with the matrices that transform the components of the state vector. The prompt gives us the transformation for the basis states:

$$
\binom{|R\rangle}{|L\rangle}=U\binom{|x\rangle}{|y\rangle} \quad U=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & i \\
1 & -i
\end{array}\right) .
$$

However, the components of the state vector will actually transform with U^{*} :

$$
\begin{aligned}
|\xi\rangle & =\left(\begin{array}{ll}
\xi_{x} & \xi_{y}
\end{array}\right)\binom{|x\rangle}{|y\rangle}=\left(\begin{array}{ll}
\xi_{x} & \xi_{y}
\end{array}\right) U^{\dagger} U\binom{|x\rangle}{|y\rangle}=\left(\begin{array}{ll}
\xi_{R} & \xi_{L}
\end{array}\right)\binom{|R\rangle}{|L\rangle} \\
& \Longrightarrow\left(\begin{array}{ll}
\xi_{R} & \xi_{L}
\end{array}\right)=\left(\begin{array}{ll}
\xi_{x} & \xi_{y}
\end{array}\right) U^{\dagger} \\
& \Longrightarrow\binom{\xi_{R}}{\xi_{L}}=U^{*}\binom{\xi_{x}}{\xi_{y}}
\end{aligned}
$$

So, to transform P_{α} into a matrix that transforms between R-L components, we use the U^{*} matrix that transforms x-y components into R-L components, and its inverse U^{T} that transforms R-L components into $\mathrm{x}-\mathrm{y}$ components:

$$
\begin{aligned}
P_{\alpha}^{R L} & =U^{*} P_{\alpha}^{x y} U^{T} \\
& =\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -i \\
1 & i
\end{array}\right)\left(\begin{array}{cc}
\cos ^{2} \alpha & \sin \alpha \cos \alpha \\
\sin \alpha \cos \alpha & \sin ^{2} \alpha
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
i & -i
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
1 & e^{-2 i \alpha} \\
e^{2 i \alpha} & 1
\end{array}\right) .
\end{aligned}
$$

Another way, which pretty much does the same thing but avoids the confusion over what matrix to use, involves playing with bras and kets. Notice that $P_{\alpha}=|\alpha\rangle\langle\alpha|$ where $|\alpha\rangle=\cos \alpha|x\rangle+\sin \alpha|y\rangle$ in the $\mathrm{x}-\mathrm{y}$ basis. We can transform this to the R-L basis:

$$
\begin{aligned}
|\alpha\rangle & =\cos \alpha \frac{1}{\sqrt{2}}(|R\rangle+|L\rangle)+\sin \alpha \frac{-i}{\sqrt{2}}(|R\rangle-|L\rangle) \\
& =\frac{1}{\sqrt{2}}\left(e^{-i \alpha}|R\rangle+e^{i \alpha}|L\rangle\right)
\end{aligned}
$$

Using this $|\alpha\rangle, P_{\alpha}$ gives the same result.
We can do a similar transformation from $Q^{x y}$ to $Q^{R L}$ to account for the behavior of the quarterwave plate.

$$
Q^{x y}=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right) \quad \Longrightarrow \quad Q^{R L}=U^{*} Q^{x y} U^{T}=\frac{1}{2}\left(\begin{array}{cc}
1+i & 1-i \\
1-i & 1+i
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
e^{i \pi / 4} & e^{-i \pi / 4} \\
e^{-i \pi / 4} & e^{i \pi / 4}
\end{array}\right)
$$

Now let's consider the combination $Q P_{\pi / 4} Q$. Plugging and chugging,

$$
\begin{aligned}
\left(Q P_{\pi / 4} Q\right)^{x y} & =\frac{1}{2}\left(\begin{array}{cc}
1 & i \\
i & -1
\end{array}\right) \\
\left(Q P_{\pi / 4} Q\right)^{R L} & =\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

So, we can summarize the effects of this system in a table:

Input	Output	Transmission probability $=\mid$ Output $^{2}{ }^{2}$
$\|x\rangle$	$\frac{1}{2}\|R\rangle$	$\frac{1}{2}$
$\|y\rangle$	$\frac{i}{2}\|R\rangle$	$\frac{1}{2}$
$\|R\rangle$	0	0
$\|L\rangle$	$\|R\rangle$	1

This filter blocks right-circularly polarized light, and turns left-circularly polarized light into rightcircularly polarized light.

Indeed, this fits with what we would expect $Q P_{\pi / 4} Q$ to do. We've set the fast and slow axes of our quarter wave plates to be parallel to the x and y axes, so light linearly polarized parallel to the x and y axes will be unaffected by the first quarter-wave plate: the plate cannot induce a shift between two components if only one is present. Then, it is halved in intensity by the 45° linear polarizer, and turned into circularly-polarized light by the second quarter-wave plate. The first quarter-wave plate will also shift left-circularly polarized light into linearly polarized light parallel to the axis of the linear polarizer, while it shifts right-circularly polarized light into linearly polarized light perpendicular to that axis.

6 Sakurai 1.7
Since we can decompose any state into a linear combination of eigenstates of $A,|\alpha\rangle=\sum_{a} c_{a}|a\rangle$, let's consider these operators' effects on eigenstates first.
(a) For some eigenstate $|a\rangle$,

$$
\prod_{a^{\prime}}\left(A-a^{\prime}\right)|a\rangle=\prod_{a^{\prime}}\left(a-a^{\prime}\right)|a\rangle
$$

which equals 0 because of the term $a^{\prime}=a$. Since this holds for all the eigenstates, the operator will return 0 for any state.
(b) For some eigenstate $|a\rangle$,

$$
\prod_{a^{\prime \prime} \neq a^{\prime}} \frac{\left(A-a^{\prime \prime}\right)}{\left(a^{\prime}-a^{\prime \prime}\right)}|a\rangle=\prod_{a^{\prime \prime} \neq a^{\prime}} \frac{\left(a-a^{\prime \prime}\right)}{\left(a^{\prime}-a^{\prime \prime}\right)}|a\rangle
$$

We have two possible cases: either $a=a^{\prime}$ and all the terms will be 1 , or $a \neq a^{\prime}$, and one term will have 0 in the numerator. So,

$$
\prod_{a^{\prime \prime} \neq a^{\prime}} \frac{\left(A-a^{\prime \prime}\right)}{\left(a^{\prime}-a^{\prime \prime}\right)}=\left|a^{\prime}\right\rangle\left\langle a^{\prime}\right|
$$

is the projection operator. Note that this is only possible if the states are nondegenerate, because if two different states have the same eigenvalue, the product will have $0 / 0$ for one of its terms.
(c) The null operator,

$$
\prod_{a^{\prime}}\left(S_{z}-a^{\prime}\right)=\left(S_{z}+\frac{\hbar}{2}\right)\left(S_{z}-\frac{\hbar}{2}\right)
$$

will return 0 for either state.
The projection operator for $S_{z} \rightarrow-\frac{\hbar}{2}$,

$$
\prod_{a^{\prime \prime} \neq-\hbar / 2} \frac{\left(S_{z}-a^{\prime \prime}\right)}{\left(-\frac{\hbar}{2}-a^{\prime \prime}\right)}=\frac{1}{2}-\frac{S_{z}}{\hbar}
$$

will return $|-\hbar / 2\rangle$ when acting on $|-\hbar / 2\rangle$ and 0 when acting on $|\hbar / 2\rangle$.

