
QM1 Problem Set 5 solutions — Mike Saelim

If you find any errors with these solutions, please email me at mjs496@cornell.edu.

1 Recall from the last problem set that the Hamiltonian is given by

H =
~Π2

2m
+ eφ(~x) =

1

2m

(
~p− e

c
~A(~x)

)2

+ eφ(~x)

=
~p2

2m
− e

2mc
[~p · ~A(~x) + ~A(~x) · ~p] +

e2

2mc2
~A2(~x) + eφ(~x)

Let’s solve for the probability flux first. With the Schrödinger equation, we don’t have to deal
with bras and kets - just the wavefunction.

∂ρ

∂t
=

∂

∂t
|ψ(~x′)|2

=

(
∂ψ(~x′)∗

∂t

)
ψ(~x′) + ψ(~x′)∗

(
∂ψ(~x′)

∂t

)
=

(
∂ψ(~x′)

∂t

)∗
ψ(~x′) + ψ(~x′)∗

(
∂ψ(~x′)

∂t

)
The time derivatives of the wavefunctions are given by the Schrödinger equation:

∂ψ

∂t
=

1

ih̄
Hψ(~x′)

=
1

ih̄

[
−h̄2

2m
∇2ψ − e

2mc

(
h̄

i
∇ · ( ~Aψ) + ~A · h̄

i
∇ψ
)

+
e2

2mc2
~A2ψ + eφψ

]
=

ih̄

2m
∇2ψ +

e

2mc

[
∇ · ( ~Aψ) + ~A · ∇ψ

]
+

1

ih̄

[
e2

2mc2
~A2ψ + eφψ

]
(
∂ψ

∂t

)∗
=
−ih̄
2m
∇2ψ∗ +

e

2mc

[
∇ · ( ~Aψ∗) + ~A · ∇ψ∗

]
+

1

−ih̄

[
e2

2mc2
~A2ψ∗ + eφψ∗

]
,

where ψ, ψ∗, A, φ, and H are all c-number (non-operator) functions of ~x′. Plugging these in,

∂ρ

∂t
=
−ih̄
2m

(∇2ψ∗)ψ +
e

2mc

[
(∇ · ( ~Aψ∗))ψ + ~A · (∇ψ∗)ψ

]
+

1

−ih̄

[
e2

2mc2
~A2|ψ|2 + eφ|ψ|2

]
+

ih̄

2m
ψ∗∇2ψ +

e

2mc

[
ψ∗∇ · ( ~Aψ) + ψ∗ ~A · ∇ψ

]
+

1

ih̄

[
e2

2mc2
~A2|ψ|2 + eφ|ψ|2

]
.

Notice that the 1
−ih̄ terms on the right easily cancel, and the e

2mc terms in the middle add up to
two total derivatives which are the same. We can make the second derivative terms on the left into
total derivatives if we add

−ih̄
2m

(∇ψ∗) · (∇ψ) +
ih̄

2m
(∇ψ∗) · (∇ψ).

So now we have
∂ρ

∂t
=
−h̄
m
∇ · Im(ψ∗∇ψ) +

e

mc
∇ · ( ~A|ψ|2)

and thus

∂ρ

∂t
+∇ ·~j = 0 where ~j =

h̄

m
Im(ψ∗∇ψ)− e

mc
~A|ψ|2.
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We get the continuity equation for our probability density, with an extra term in the probability
current proportional to the probability that the particle is at a spot and the EM field strength at
that spot. The coupling to the EM field changes how the wavefunction evolves with time.

For the second part of this problem, we’ll be working solely with operators. From the Heisenberg
equation of motion,

d~Π

dt
=

1

ih̄
[~Π, H] =

1

ih̄

(
1

2m
[~Π, ~Π2] + e[~Π, φ]

)
.

Let’s work with the individual components here. I’ll work in Einstein notation, which is a common
convention for equations in physics: any repeated index in a term is understood to be summed
over. In effect, I’m just dropping the summation signs in front of the expressions. Any index that
you only see one copy of in a term is not summed over.

The second commutator is pretty simple:

[Πi, φ] = [pi, φ] = −ih̄∂iφ

where ∂i = ∂
∂xi

. The first commutator, however, is not as simple as it looks. The canonical
commutation relations involve xi and pi, and Πi contains both of them. While [Πi,Πi] = 0, [Πi,Πj ]
is not necessarily 0.

[Πi,Πj ] = −e
c

(
[pi, Aj ] + [Ai, pj ]

)
=
ieh̄

c
(∂iAj − ∂jAi)

=
ieh̄

c
(δkiδlj − δkjδli)∂kAl

=
ieh̄

c
εmklεmij∂kAl

=
ieh̄

c
εijm(∇× ~A)m

=
ieh̄

c
εijmBm

where εijk is the Levi-Civita tensor and I’ve used the contracted epsilon identity and the definition
of the cross product. If you are not familiar with Einstein notation, this is a good opportunity to
learn: i and j are not contracted anywhere in any of this stuff (how can they be, since they are not
summed over in the commutator?) but the rest of the indices are contracted and summed over.

With the foresight we have by looking at what the final answer is, let’s try to compute what
dxi
dt is for this Hamiltonian:

dxi
dt

=
1

ih̄
[xi, H] =

1

ih̄

[
xi,

pjpj
2m
− e

2mc
(pkAk +Akpk)

]
=
pi
m
− e

mc
Ai =

Πi

m
,

so, as some may have expected, the position operator evolves with time according to the kinematic
momentum ~Π, just like it did for the free particle Hamiltonian.
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Finally, we can put this all together:

dΠi

dt
=

1

ih̄

(
1

2m
(Πj [Πi,Πj ] + [Πi,Πj ]Πj) + e[Πi, φ]

)
=

e

2mc

(
εijmΠjBm + εijmBmΠj

)
− e∂iφ

=
e

2c

(
εijm

Πj

m
Bm − εimjBm

Πj

m

)
− e∂iφ

=
e

2c

[(
d~x

dt
× ~B

)
i

−
(
~B × d~x

dt

)
i

]
− e∂iφ

=⇒ d~Π

dt
=

e

2c

[
d~x

dt
× ~B − ~B × d~x

dt

]
− e∇φ.

2 Sakurai p.150, #37
We want to compute the phase shift produced by the time evolution of the neutron’s wave-

function in the magnetic field. For simplicity, we’ll only consider the component of the magnetic
field perpendicular to the neutron’s motion (since that’s the only part of the field that affects the
neutron anyway), and we have the freedom to let that field be in the x-direction, while the neutron
travels in the z-direction.

Our time-evolution operator is

exp

[
− i
h̄
HT

]
= exp

[
− i
h̄

(
p2
z

2m
− ~µ · ~B

)
T

]
= exp

[
− i
h̄

(
p2
z

2m
− gn

eB

mnc
Sx

)
T

]
.

The first term in the exponent will be the same for both arms, but the second term will be different
because it depends on the magnetic field. Because the Sx operator returns an eigenvalue of h̄/2
regardless of whether the neutron is spin-up or spin-down,

− i
h̄

(−~µ · ~B)T =
i

h̄
gn

eh̄B

2mnc
T.

But, we also have

T =
l

vz
=

l

pz/mn
=
lmn

h/λ
=
λlmn

2πh̄

where the neutrons travel through a magnetic field region of length l with de Broglie wavelength
λ. Thus, the neutron picks up a phase shift

φ =
gneB

2mnc

λlmn

2πh̄
=
gneλl

4πh̄c
B

from the interaction with the magnetic field. The difference in the phase shifts between neutrons
in magnetic fields that correspond to successive maxima in the counting rates must equal 2π, so

∆φ =
gn|e|λl
4πh̄c

∆B = 2π =⇒ ∆B =
8π2h̄c

gn|e|λl
.

3 SHO Partiton Function
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(a) I hope you like Gaussian integrals. They are awesome because
∫∞
−∞ dx e

−x2 =
√
π. Also

note that sin(ix) = i sinh(x) and cos(ix) = cosh(x).

Z =

∫ ∞
−∞

dx

√
mω

2πi sinωt
exp

{
i
mω

2 sinωt
2[cosωt− 1]x2

}∣∣∣∣
t=−ih̄β

=

∫ ∞
−∞

dx

√
mω

2πi sin(−iβh̄ω)
exp

{
i

mω

2 sin(−iβh̄ω)
2[cos(−iβh̄ω)− 1]x2

}
=

√
mω

2π sinh(βh̄ω)

∫ ∞
−∞

dx exp

{
− mω

sinh(βh̄ω)
[cosh(βh̄ω)− 1]x2

}
To get this into Gaussian integral form, make the transformation

u =

√
mω

sinh(βh̄ω)

√
cosh(βh̄ω)− 1 x.

Z =

√
mω

2π sinh(βh̄ω)

√
sinh(βh̄ω)

mω

√
1

cosh(βh̄ω)− 1

∫ ∞
−∞

du e−u
2

=
1√
2

√
1

cosh(βh̄ω)− 1

=

√
1

eβh̄ω + e−βh̄ω + 2

=

√
e−βh̄ω

(1− e−βh̄ω)2

=
e−βh̄ω/2

1− e−βh̄ω
=
∞∑
j=0

e−β(j+1/2)h̄ω.

(b) It is pretty simple to show that − ∂
∂β lnZ =

∑
iEiPi:

− ∂

∂β
lnZ = − 1

Z

∂

∂β

∑
i

e−βEi

=
∑
i

Ei
e−βEi

Z
=
∑
i

EiPi = Ē.

Then, we can show that − ∂
∂β lnZ equals the listed value:

Ē = − ∂

∂β
ln

(
e−βh̄ω/2

1− e−βh̄ω

)
= − ∂

∂β

[
−βh̄ω

2
− ln

(
1− e−βh̄ω

)]
= h̄ω

(
1

2
+

e−βh̄ω

1− e−βh̄ω

)
= h̄ω

(
1

2
+

1

eβh̄ω − 1

)
.
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Alternatively, we can also show that the definition of Ē also equals the listed value, though this
takes a bit more work:

Ē =
∑
n

En
e−βEn

Z
=

∞∑
n=0

(
n+

1

2

)
h̄ω e−β(n+1/2)h̄ω 1− e−βh̄ω

e−βh̄ω/2

= h̄ω(1− e−βh̄ω)

{
1

2

∞∑
n=0

(
e−βh̄ω

)n
+
∞∑
n=0

n

(
e−βh̄ω

)n}

= h̄ω(1− e−βh̄ω)

{
1

2

1

1− e−βh̄ω
+ e−βh̄ω

∞∑
n=0

n

(
e−βh̄ω

)n−1}

=
h̄ω

2
+ h̄ω(1− e−βh̄ω)e−βh̄ω

d

de−βh̄ω

∞∑
n=0

(
e−βh̄ω

)n
=
h̄ω

2
+ h̄ω(1− e−βh̄ω)e−βh̄ω

d

de−βh̄ω
1

1− e−βh̄ω

=
h̄ω

2
+ h̄ω(1− e−βh̄ω)e−βh̄ω

1

(1− e−βh̄ω)2

= h̄ω

(
1

2
+

1

eβh̄ω − 1

)
.

(c) For this part, it helps to know that ∂β
∂T = −1

kBT 2 and θE
T = βh̄ω.

C =
1

N0

∂Ēcrystal

∂T
=

3N0

N0

∂Ē

∂β

∂β

∂T

= 3h̄ω
−h̄ωeβh̄ω

(eβh̄ω − 1)2

−1

kBT 2

= 3kB

(
h̄ω

kBT

)2 eβh̄ω

(eβh̄ω − 1)2

= 3kB

(
θE
T

)2 eθE/T

(eθE/T − 1)2
.

For high temperatures, θE
T � 1, so we can expand the exponentials and cut off higher-order

terms:

C −→ 3kB

(
θE
T

)2 1 + . . .

(1 + θE
T + . . .− 1)2

−→ 3kB.

For low temperatures, θE
T � 1, so we can rewrite the fraction in terms of exp(−θE/T ) and

argue that the exponential in the denominator is much, much smaller than 1:

C = 3kB

(
θE
T

)2 e−θE/T

(1− e−θE/T )2
−→ 3kB

(
θE
T

)2

e−θE/T .

4 Sakurai, p148, #25

(a) Alright. Let’s solve the Schrödinger equation for this wavefunction, pursuant to the bound-
ary conditions:

− h̄2

2me
∇2ψ(ρ, φ, z) = Eψ(ρ, φ, z)


ψ(ρa, φ, z) = ψ(ρb, φ, z) = 0

ψ(ρ, φ, 0) = ψ(ρ, φ, L) = 0

ψ(ρ, φ+ 2π, z) = ψ(ρ, φ, z)
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Since we’ll be naturally operating in cylindrical coordinates, we’ll need the Laplacian in cylindrical
coordinates:

∇2 =
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2

∂2

∂φ2
+

∂2

∂z2
.

As with most of the tractable partial differential equations given to physics students, this one
is solvable by separation of variables, so let’s let

ψ(ρ, φ, z) = R(ρ)Y (φ)Z(z).

This allows us to rewrite our differential equation by introducing this definition of φ and dividing
both sides by φ. In the end, we get

1

R(ρ)

1

ρ

∂

∂ρ

(
ρ
∂R(ρ)

∂ρ

)
+

1

Y (φ)

1

ρ2

∂2Y (φ)

∂φ2
+

1

Z(z)

∂2Z(z)

∂z2
+

2meE

h̄2 = 0

with boundary conditions 
R(ρa) = R(ρb) = 0

Z(0) = Z(L) = 0

Y (φ+ 2π) = Y (φ)

Note that, in this form, the Z(z) term is the only one dependent on z and it is not dependent
on any other variables. So, the term must be a constant. With a little foresight and the knowledge
that whatever we get will have to satisfy the boundary conditions at z = 0 and z = L, we’ll let this
constant be −C2

z .
∂2Z(z)

∂z2
= −C2

zZ(z)

This admits solutions Z(z) = A cos(Czz)+B sin(Czz). Applying the boundary conditions on Z(z),
we find that

Z(z) = Az sin

(
lπ

L
z

)
Cz =

lπ

L
l = 1, 2, 3, . . .

where our restrictions on the possible values of l ensure that our solutions satisfy the boundary
conditions, are nontrivial, and are unique.

We return to our original equation and note that, if we multiply both sides by ρ2, we again get
a term that only depends on one variable, φ, and is the only term dependent on φ:

ρ

R(ρ)

∂

∂ρ

(
ρ
∂R(ρ)

∂ρ

)
+

1

Y (φ)

∂2Y (φ)

∂φ2
+ ρ2

[
−
(
lπ

L

)2

+
2meE

h̄2

]
= 0

The differential equation for Y (φ) is the same, and we’ll let it be Y (φ) = Aφe
imφ. Because of the

periodic boundary condition, m is constrained to be an integer.
Let’s go back to our original equation, expand the first term, and multiply both sides by R(ρ).

ρ2∂
2R(ρ)

∂ρ2
+ ρ

∂R(ρ)

∂ρ
+

{
ρ2

[
−
(
lπ

L

)2

+
2meE

h̄2

]
−m2

}
R(ρ) = 0; l = 1, 2, 3, . . . ;m ∈ Z

This is almost in the form we need to realize R(ρ) as a solution to Bessel’s differential equation,
but we need to get rid of the coefficient of ρ2R(ρ). Let

ξ =

√
2meE

h̄2 −
(
lπ

L

)2
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and note that solving the differential equation in terms of ξρ instead of ρ will leave the form of the
first two terms untouched. Now we have

(ξρ)2∂
2R(ξρ)

∂(ξρ)2
+ (ξρ)

∂R(ξρ)

∂(ξρ)
+ [(ξρ)2 −m2]R(ξρ) = 0

which admits solutions R(ξρ) = AJm(ξρ) + BNm(ξρ) where Jm and Nm are Bessel functions of
the first and second kind, respectively, with order m. Applying our boundary conditions gives us
a system of equations

AJm(ξρa) +BNm(ξρb) = 0

AJm(ξρb) +BNm(ξρb) = 0.

with which we can solve for the allowed values of ξ that make the radial wavefunction become zero
at both the inner and outer cylinder walls:

Jm(ξρb)Nm(ξρa)− Jm(ξρa)Nm(ξρb) = 0.

Let us designate the nth value of ξ that solves this mth-order equation kmn. We can now write
out the full non-normalized wavefunction:

ψlmn(ρ, φ, z) = A[Nm(kmnρ∗)Jm(kmnρ)− Jm(kmnρ∗)Nm(kmnρ)] eimφ sin

(
lπ

L
z

)
where ρ∗ = ρa or ρb, l = 1, 2, 3, . . ., m ∈ Z, and kmn is the nth root of the equation

Jm(kmnρb)Nm(kmnρa)− Jm(kmnρa)Nm(kmnρb) = 0.

Finally, we can get the energy levels from the definition of ξ = kmn:

kmn =

√
2meElmn

h̄2 −
(
lπ

L

)2

=⇒ Elmn =
h̄2

2me

[
k2
mn +

(
lπ

L

)2]
.

(b) Our Hamiltonian changes to the form

H =
~p2

2me
− e

2mec
(~p · ~A+ ~A · ~p) +

e2

2mec2
~A2.

So what is ~A, if all we know is ~B = Bẑ for ρ < ρa and zero elsewhere?
The easiest way I know to get ~A involves applying Stokes’ theorem to a flat, 2D circular disk

in the ρ− φ plane and centered at ρ = 0. In the region ρ < ρa, we let the disk have radius ρ < ρa:∫
S

(∇× ~A) · ~dS =

∮
∂S

~A · ~dl∫
S

~B · ~dS =

∮
∂S

~A · ~dl

B (πρ2) = Aφ (2πρ)

Aφ =
B

2
ρ; ρ < ρa.

If we let the other components of ~A be zero, we find that we get the correct magnetic field inside
ρ < ρa. Of course, this is gauge-dependent, and you can pick any gauge you want. Outside of ρa,
the magnetic field drops to zero, so

B (πρ2
a) = Aφ (2πρ)

Aφ =
Bρ2

a

2

1

ρ
; ρ ≥ ρa.
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Again letting the other components of ~A be zero, we recover zero magnetic field outside ρa and a
continuous vector potential.

Let’s put our answer for ~A into the Hamiltonian. With this choice of ~A, it turns out that ~A
and the gradient operator commute.

H =
~p2

2me
− e

mec
~A · ~p+

e2

2mec2
~A2

= − h̄2

2me
∇2 + i

eh̄Bρ2
a

2mec

1

ρ2

∂

∂φ
+
eB2ρ4

a

8mec2

1

ρ2

With the benefit of foresight, let

ζ =
eBρ2

a

2h̄c
,

which is dimensionless. Then, our Hamiltonian becomes

H = − h̄2

2me

[
∇2 − i2ζ

ρ2

∂

∂φ
− ζ2

ρ2

]
.

Redoing the same steps with this new Hamiltonian,

1

R(ρ)

1

ρ

∂

∂ρ

(
ρ
∂R(ρ)

∂ρ

)
+

1

Y (φ)

1

ρ2

[
∂2Y (φ)

∂φ2
− i2ζ ∂Y (φ)

∂φ

]
+

1

Z(z)

∂2Z(z)

∂z2
+

2meE

h̄2 − ζ2

ρ2
= 0

with the same boundary conditions as before. The solution in the Z(z) sector is the same, but we
end up with a different differential equation for Y (φ):

∂2Y (φ)

∂φ2
− i2ζ ∂Y (φ)

∂φ
+ C2

φY (φ) = 0.

Knowing that we still need a sinusoidal solution in φ that obeys the periodic boundary condition,
we can try a trial solution Y (φ) = Aφe

iMφ where M ∈ Z. This gives us the equation

−M2 + 2ζM + C2
φ = 0 =⇒ −C2

φ = −M2 + 2ζM.

Putting this back in,

1

R(ρ)

1

ρ

∂

∂ρ

(
ρ
∂R(ρ)

∂ρ

)
+

1

ρ2
(−M2 + 2ζM)−

(
lπ

L

)2

+
2meE

h̄2 − ζ2

ρ2
= 0

ρ2∂
2R(ρ)

∂ρ2
+ ρ

∂R(ρ)

∂ρ
+

{[
−
(
lπ

L

)2

+
2meE

h̄2

]
ρ2 − (M − ζ)2

}
R(ρ) = 0

We get the same equation we had before, with the same formulas for the wavefunction and energy

spectrum, except that m −→ M − ζ = eBρ2a
2h̄c ! This shifts the orders of the Bessel functions to

different values, which are not necessarily integers. The spacing between the orders is still 1,
however.

(c) If switching on the magnetic field doesn’t result in an energy change in the ground state,
then the Bessel orders M − ζ must still be integers. But since M is an integer, this means that ζ
must be an integer:

ζ =
eBρ2

a

2h̄c
= N

Φ = Bπρ2
a =

2πh̄c

e
N =

hc

e
N ; N ∈ Z
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5 Charged particle in a magnetic field

(a) Classically, the charged particle will obey the Lorentz force law: ~F = e
c~v× ~B. ~B = ∇× ~A =

Bẑ, so

mẍ =
eB

c
ẏ

mÿ = −eB
c
ẋ

mz̈ = 0.

Identifying ω0 = eB
mc , we can solve the first two equations by taking another derivative:

ẍ = ω0ẏ

ÿ = −ω0ẋ
=⇒

...
x = ω0ÿ = −ω2

0ẋ
...
y = −ω0ẍ = −ω2

0 ẏ

With some foresight, let’s choose the solutions

ẋ(t) = −ω0A sin(ω0t+ δ)

ẏ(t) = −ω0A cos(ω0t+ δ)

so that our final answer ends up being

x(t) = A cos(ω0t+ δ) + x0

y(t) = −A sin(ω0t+ δ) + y0

z(t) = v0zt+ z0.

(b) We make the canonical transformation to

Q =
c

eB
Πx =

c

eB

(
px +

eB

2c
y

)
P = Πy = py −

eB

2c
x.

We can show that this transformation is indeed canonical by computing the commutator:

[Q,P ] =
c

eB
[Πx,Πy] =

c

eB

ieh̄

c
B = ih̄

where I have used [Πi,Πj ] = ieh̄
c εijmBm from problem (1).

Writing the Hamiltonian in terms of P and Q,

H =
1

2m

(
e2B2

c2
Q2 + P 2 + p2

z

)
=
P 2

2m
+

1

2
m

(
eB

mc

)2

Q2 +
p2
z

2m
.

The first two terms represent a 1D simple harmonic oscillator with ω0 = eB
mc , while the last term

represents a free particle in the z-direction. So, E = (n+ 1
2)h̄ω0 + h̄2k2

2m .
You might be wondering how what we did is kosher. How did we go from a 2D simple harmonic

oscillator to a 1D simple harmonic oscillator, just by redefining our variables? We seem to have
lost two degrees of freedom. Well, fear not: we can define a second set of canonical variables that
are conjugate to Q and P ,

Q̄ =
c

eB

(
py +

eB

2c
x

)
P̄ = px −

eB

2c
y,

9



which satisfy [Q̄, P̄ ] = ih̄, [Q, Q̄] = 0, and [P, P̄ ] = 0. These canonical variables do not appear
in the Hamiltonian because they represent helical motion opposing the direction preferred by the
magnetic field.

(c) Expand!

H =
1

2m

[(
px +

eB

2c
y

)2

+

(
py −

eB

2c
x

)2

+ p2
z

]
=

p2
x

2m
+

1

2
m

(
eB

2mc

)2

x2 +
p2
y

2m
+

1

2
m

(
eB

2mc

)2

y2 +
p2
z

2m
− eB

2mc
(xpy − ypx)

=
p2
x

2m
+

1

2
m

(
ω0

2

)2

x2 +
p2
y

2m
+

1

2
m

(
ω0

2

)2

y2 +
p2
z

2m
− ω0

2
Lz

= H

(
ω0

2
,m

)
− ω0

2
Lz

The basis for diagonalizing H(ω0
2 ,m) will also diagonalize H if [H(ω0

2 ,m), H] = 0:[
H

(
ω0

2
,m

)
, H

]
=

[
H

(
ω0

2
,m

)
,−ω0

2
Lz

]
= −ω0

2

{
1

2m
[p2
x + p2

y, xpy − ypx] +
1

2
m

(
ω0

2

)2

[x2 + y2, xpy − ypx]

}
= −ω0

2

{
1

2m

(
[p2
x, x]py − [p2

y, y]px

)
+

1

2
m

(
ω0

2

)2(
−y[x2, px] + x[y2, py]

)}
= −ω0

2

{
1

2m

(
−2ih̄pxpy + 2ih̄pypx

)
+

1

2
m

(
ω0

2

)2(
−2ih̄yx+ 2ih̄xy

)}
= 0

So, this is indeed the case. The full Hamiltonian not only shares the same states as the Hamiltonian
of a 2D SHO with angular frequency Ω = ω0

2 , but also the same energy levels and creation and
annihilation operators:

ax =

√
mΩ

2h̄

(
x+

ipx
mΩ

)
a†x =

√
mΩ

2h̄

(
x− ipx

mΩ

)
ay =

√
mΩ

2h̄

(
y +

ipy
mΩ

)
a†y =

√
mΩ

2h̄

(
y − ipy

mΩ

)
with commutation relations [ax, a

†
x] = [ay, a

†
y] = 1 and 0 otherwise. The states are { |n′x, n′y, h̄kz〉 }.

We can also rewrite the angular momentum operator in terms of these ladder operators,

Lz = xpy − ypx

=

(√
h̄

2mΩ
(ax + a†x)

)(
−i
√
mΩh̄

2
(ay − a†y)

)
−
(
−i
√
mΩh̄

2
(ay + a†y)

)(√
h̄

2mΩ
(ax − a†x)

)
= ih̄(axa

†
y − aya†x)

and we get the Hamiltonian

H = h̄Ω(1 + a†xax + a†yay)− ih̄Ω(axa
†
y − aya†x) +

p2
z

2m
.
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However, since the classical motion is circular and our eigenstates of the Hamiltonian are also
definite states of angular momentum Lz, let’s rewrite the entire system in terms of clockwise and
counterclockwise creation and annihilation operators

a+ =
1√
2

(ax − iay) a†+ =
1√
2

(a†x + ia†y)

a− =
1√
2

(ax + iay) a†− =
1√
2

(a†x − ia†y).

These creation and annihilation operators also satisfy the normal commutation relations: [a+, a
†
+] =

[a−, a
†
−] = 1 and 0 otherwise. Just as the previous set of ladder operators created and annihilated

oscillations in the x- and y-directions, this set of ladder operators creates and annihilates oscillations
in the clockwise and counterclockwise directions. To put the Hamiltonian in this form, we’ll need
the reverse conversion:

ax =
1√
2

(a+ + a−) a†x =
1√
2

(a†+ + a†−)

ay =
i√
2

(a+ − a−) a†y =
−i√

2
(a†+ − a

†
−)

so that

a†xax + a†yay = a†+a+ + a†−a− = n+ + n− axa
†
y − aya†x = −i(a†+a+ − a†−a−) = −i(n+ − n−),

Lz = h̄(n+ − n−)

and

H = h̄Ω(1 + n+ + n−)− h̄Ω(n+ − n−) +
p2
z

2m

= h̄ω0

(
1

2
+ n−

)
+

p2
z

2m
.

Thus, we obtain the energy spectrum

E(n−, kz) = h̄ω0

(
1

2
+ n−

)
+
h̄2k2

z

2me

with angular momenta m = n+ − n−. Note that the number of quanta for the + oscillator doesn’t
figure into this equation! This means that every energy level has infinite degeneracy.

To write it in the form indicated in the prompt, note that

n+ + n− =

{
2n− + |m| m > 0

2n+ + |m| m < 0

so that

H = h̄Ω(1 + n+ + n−)− h̄ΩLz +
p2
z

2me

E = h̄Ω(1 + 2k + |m|)− h̄Ωm+
h̄k2

z

2me

= h̄ω0

(
1

2
+ k +

1

2
(|m| −m)

)
+
h̄2k2

z

2me
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where k =≥ 0. In this form, we see that for each state of definite angular momentum, there is
a tower of possible energy levels. For states with angular momentum m > 0, the m-dependence
disappears and you get the normal tower of levels starting with energy 1

2 h̄ω0, but for states with
m < 0, the tower effectively starts at (1

2 + |m|)h̄ω0. This is because setting m constrains the
difference in numbers of quanta n+ − n−, and n+ and n− must both be ≥ 0.

You might be having a lot of trouble trying to visualize what this all conceptually means. There’s
a reason for this! Lz is the canonical angular momentum, not the physical angular momentum,
analogous with how ~p is no longer the physical momentum upon the introduction of a vector
potential. The physical angular momentum is

Kz = xΠy − yΠx; ~Π = ~p− e

c
~A

= Lz −
eB

2c
(x2 + y2)

= −h̄(1 + 2a†−a− + a+a− + a†+a
†
−).

Calculating the expectation value of this for a given state |n+, n−, kz〉, we get the relation

E =
ω0

2
(−〈Kz〉) +

h̄2k2
z

2me

which is what we would expect classically, given that 〈Kz〉 will be negative for B > 0.
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