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PHYS 6572 - Quantum Mechanics I - Fall 2011
Problem Set 7 — Solutions
Joe P. Chen / joe.p.chen@gmail.com

For your reference, here are some useful identities invoked frequently on this problem set:

J2 jom) = j(j+1)k? j,m)

Ji = JpEil,
Jiljom) = m/(GFm)(GEm+1)|jm=E1)

1 Angular momentum

(a). There are at least two ways to approach this problem:

e Using the ladder operators, J, = 1(J4 + J_) and J, = &(J4 — J_). When J, (resp.
Jy) acts on | j,m), it produces a linear combination of two ket states | j,m + 1) and
| 7,m — 1), both of which are orthogonal to | j,m). So if we put the bra (j, m | with the
ket Jy| j,m) (vesp. Jy| j, m)) together, the bracket must vanish: that is, the expectation
value of J, (resp. Jy) in the state | j,m) is 0.

e [t is also possible to exploit the commutation relations of the J; alone without invoking
the ladder operators. Since [Jy, J.] = ihJ,, and J,| j,m) = mh| j,m), we can compute
the expectation value of J, in | j,m) as follows:

. ) 1 . )
<.7am|JJ3|Jvm> = %<]7m”Jy7JzH]7m>
1 . . . .
- %((]7”71 | JyJ2 ’]7m> - <j,m ‘ Jsz ‘ Jam>)

1 . . . .
= 0.

Essentially the same arguments go to show that (j,m | Jy | j,m) = 0.
(b). For this part we use:

e The commutation relation [J;, J;| = ihe;iJy (i,7,k = 1,2.3).
e The Jacobi identity of commutators (Lie brackets): [4, B, C]] = —([B, [C, A]]+[C, [A, B]]).
Thus if an operator O commutes with both J; and J; (i # j), then it must commute with

the third component:

€ijk

IR0, [Ji, Jj)) = =2 {1 L + [, 050} = 0.

[Ov Jk] =
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2 Spin precession
We're given a spin-1/2 particle | ¢) in a B field
B(t) = B cos(wt)i + Bsin(wt)j + Bok

which consists of a static z-component and an oscillating component in the xy-plane. In this lab
frame, | 1) evolves according to the Schrodinger equation

Zh*l (b)) = H()| ¢(t)) = —(S-B(1))| ¥(1))-

Due to the time-dependence of B (or H), it is more complicated to write down the solution | ¥(¢))
in the lab frame. So instead we shifts to a frame which co-rotates with the oscillating field, and
introduce | 1, (t)) = e~™S:/"| 4(t)), which should see a time-independent B field. What is the
effective Hamiltonian H,. in the rotating frame? A direct calculation shows that

d — g ﬁ —iwS,t/h
tho | ¢n(t)) = by (e | ¢(t)>)
= 1h (—’L'(J.)Sz/h) e—iwszt/ﬁ| ¢(t)> + ihe‘iwszt/hi

dt
= WSL| () + eI H (1) (1))
= [wS. 4 WS @) | g (1)),

| $(2))

=H,
To go on we must unravel the operator e =*S:t/"{ (t)e™9t/h This can be done by considering its
matrix representation in the eigenbasis of S, {| +),| —)}: Clearly

o—iwSst/h _ ( e t/2 0 ) and  ewS=t/h — (efinzt/h)T'

0 ezwt/Q
Meanwhile,
hry 3
Ht) = (S BW) = > 0B,
j=1
_ M Blcos(wt) + isin(wt)]
B 2 \ Bcos( wt - zsm(wt)] —By
B h’)/ 'Lwt
2 Be zwt _BO :
Thus

—iwS,t/h St /h emwt/2 By  Be™! et/ 0
e~ t/ H(t)elw t/ ( 0 eiwt/Q Befiwt _BO 0 e*iwt/Q

e—iwt/2 0 Boeiwt/Q Beiwt/Z
0 ez’wt/2 Befiwt/2 _Boefiwt/2

_ Imw(By B
a 2 B —B

= —4(BoS. + BS,).

3 w[3 [T
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Putting it together, we get
d s w ~
Zh%| Ur(t)) = —y(S - By)| ¢ (t)) where B, = Bi, + | By — S k.

Now that the effective Hamiltonian H, = —y(S-B,) is time-independent, we may easily write down
the time evolution of any state in the rotating frame as

| i (8)) = e ], (0)) = eV EBIYR] 4 (0)).

To explicitly compute the action of the unitary evolution operator U(t) = e
state, it helps to exploit the following identities: Define

| f;+) = cos (9)|+>+el¢sm< )\—>
i) = i (§) 14+ ePeos(3) 1)

where 1 is the unit vector in R? with azimuthal angle 6 (from +l§) and polar angle ¢. Then

7(SBr)t/h on an arbitrary

In the current problem, the operator S - B, = |B,|(S - nn), where

2
B
|B,| = \/32 + (Bo - w) and h has associated angles f = sin™! <|B |> , $=0.
Y r

Therefore it has eigenkets | n; £) with eigenvalues +|B,|/i/2. By the functional calculus of operators
(see #1, PS1), the operator " (SBr)t/I has the same eigenkets | fi; £) with eigenvalues e+/Br[t/2,
This means that

| (t)) = eBH2 R | (0))] A5 +) + e B0 — |4, (0))] ;).

Now suppose the initial ket is | ¢,.(0)) = | (0)) = | 4), per the problem. Then in the rotating
frame its time evolution is given by

[ () = TP | 1) By +) + e B0 — | ) ;)

_ B2 g (g),n Ly = e ilBrlt2 gy (g)‘ﬁ;_>
= B2 o (g) [ <9)|+>+sm< )r—ﬁ
o () ) ()
o () () o] () i
() () ()] o (2 )0

where we have used the shorthands wg = By/v and w, = |B,|/7.
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Back in the lab frame, the state would read

[ 9() = <M (1))
(S i (50 sy (22 )i (451 s

- wyt
= |cos|
wrt fwo—wy L fwrt iwt/2 (BN (Wt w2
|:COS<2> ’L( o >sm<2)]e | +) +1 o sin | —- ) e | —).

Note that | ¥(0)) = | +), as required. It follows that (S,(0)) = ((0) | S, | ¥(0)) = h/2.

If w = wy ("on resonance”), the effective field B, in the rotating frame consists of the transverse
component Bi, only, so the spin state precesses about the i, axis at angular frequency w, = wy =
~vB. From the perspective of the lab frame, the state evolves as

| ¥(t)) = cos (w20t> e™0t/2| 1) 4 isin <w§t> e 0t/2) _y

. t . t ;
eiwot/2 [cos (w;) | +) + '™/ sin <w§> e wot| —)]

2| (1) +),

+
_|_

where n(t) is the unit vector with associated angles 6(t) = wot and ¢(t) = (7/2) — wot. The
orientations of the spin state trace out a figure-8 on the Bloch sphere (Fig. [I). Note that the up
state | 4+) flips into the down state | —) in a duration T' = 7/wy, and vice versa.

05

-0.5

-0.5

Figure 1: Time evolution of a spin-1/2 state in a field B(t) = B cos(wt)i 4+ B sin(wt)j + Bok when
on resonance (w = yBy). Initial state is the "up” state | +) = | 2;+). Dots on the Bloch sphere
indicate the successive spin orientations in the lab frame.

For general w, the z-magnetization of the state | ¥ (t)) at time ¢ is

(S=(t))
= (@) 5 |@)
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)] LI <VB
>sin (“‘gtﬂ M2 4y i <1

() )
) ()1

Wy
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wyt

3€

)

= 7—1 _cos wrt +1 i sin wrt 2— ﬁ 2sin
o 2 2 w’r 2 w?“
R o5 [wt (wo —w)? — (vB)? . 5 [wit
= 5 _cos <2> + 2 sin o5
_ h 1+ cos(wt) N (wo —w)? — (vB)? (1 — cos(wyt)
2] 2 w2 2
h[2(wo —w)? 2(yB)?
= 3 Br + 202 cos(wyt)
(wo — w)? (vB)? }
= (5,(0 s(wyt)] .
=8 [(wo ~7 4 (BE T (wn—wp £ (7B )
From this we deduce that the up state reverses orientation in a duration
7=" = T .
wr /(wo —w)? + (vB)?

3 Angular momentum of an unknown particle (Sakurai 3.15)

(a). It helps to rewrite 1(x) in spherical coordinates:

P(x)

rf(r)(sin® cos ¢ + sinfsin ¢ + 3 cos h).

To check whether v is an eigenfunction of L2, we may carry out a direct computation. First
note that the operator L? can be explicitly written in spherical coordinates [e.g. Sakurai Eq.

—rf(r)(sind cos ¢ + sin O sin ¢)

cos B cos ¢ + cos @ sin ¢ — 3sin6)
7)0p [sin 0 cos 6(cos ¢ + sin ¢) — 3 sin? 9]
7 f(r)[cos(26)(cos ¢ + sin ¢) — 3sin(26)]

(3.6.15)]:
L%)(x) = —1? Sile 08¢¢ + SiIll 989[(sin 6)0p] | 1(x)
Dpptp(x) = (
dp(x) = rf(r)
Jp [(sin 0) 9] ¥ (x) rf(r)
= rf(r)
So
L%y (x) —h? [—sin#(cos ¢ + sin )] + —

sin? 0

2h%9(x).

sin @

[cos(20)(cos ¢ + sin @) — 3sin(20)]| rf(r)

—21%r f(r) [~ sin 6(cos ¢ + sin ¢) — 3 cos d]

Thus ¢(x) is an eigenfunction of L? with eigenvalue I(I + 1)h? = 2h2, or [ = 1.
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(b).

Alternatively, we can re-express 1(x) as a linear combination of spherical harmonics. Using
the normalized spherical harmonics

/3 /3 :
YP = Ecos@ ) YljEl =F 87$in Get?,

r i 4 omid i _ gt
v(x) = rf(r) siné’(6 —{—26 + 5 2,6 >+36089]
i

we find

1 . 1 A
= rf(r) 2(1—i)sinc96’¢—|—2(1+é)sin9€_’¢+36080]

— rf(r) —ﬁ(l—z‘)lfh\/?<1+z‘m‘1+2¢37ﬂﬂo

In one fell swoop, we've shown that t(x) is an eigenfunction of L? with eigenvalue 1(1 +
1)h% = 2h2, and expanded 1 (x) in the eigenbasis of the j = 1 Hilbert space, i.e,. ¥(x) =
rf(r) 271%:_1 cm Y™ where

2 2
e :—,/%(1—1), co =231, 1 :,/%(Hz’).

It ought to be clear that the probability of ¢ being found in the state | 1,m) is given by

_ ’Cm|2
P(m) = =3
Zm:fl ‘Cm’
Since |co|? = 9]c1]? = 9|c_1|?, we have
1 9 1
P(l)=—, P(0)=—, P(-1)=—

. Recall that the Laplacian in R? can be written as

e A o ] = Lo o E
A= > O (r°0,) + 3 [Sin2«98¢¢ + sin&ae ((sin 9)89)] =3 [(% (r*or) h2:| )

So the time-independent Schrédinger equation in R3 takes the form

2 2
{_2:;7’2& (r*0,) + L + V(r)} U(x) = E¥(x). (1)

2mr?

Now suppose the energy eigenstate ¥(x) is the known wavefunction ¥ (x) = rf(r)((2), where
¢(2) = sinf cos p+sin fsin ¢+ 3 cosd. From Part (a) we already saw that L2 (x) = 2% (x).
Meanwhile,
Or(x) = [f(r)+rf(rC(Q)
Op(r?9p(x)) = 2r[f(r) +rf (1)) + r*[2f'(r) + " (N]C(Q)
= r[2f(r) +4rf'(r) + 12 (1)K ().
Plugging the various terms into () yields

2 2
o [2HT rf(r) P (PCQ) + e T + V(@) = Bl f(r)C(©))

Thus

2 2 rf'(r) +r2f"(r
V= B e 2] =l [

rf(r) 2mr 2mr?
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4 Rotated angular momentum (Sakurai 3.7)

A state | 9) rotated by an angle 3 about the y-axis becomes e~*/v%/%| 4)). So the probability for
the new state to be in | 2,m’) (m’ = 0,+1,+2) is given by the modulus squared of the projection
of e=*wB/"| | =2 m = 0) onto the subspace | | = 2,m’), i.e.,

2 . 2
Dy(a=0,5,7 = 0)‘ = ’<2,m' | e~ uB/h | 2,0>‘ :

where «, 3, and v are the Euler angles. At this stage we may invoke Sakurai Eq. (3.6.52)

47
20+ 1

DY (@, 8,7 =0) = Y™ (8, ).

Using the expressions Y5" (6, ¢) in Appendix A, we find

DA =0,87=0) = \/ TV (5.0 \/4”\/;f (sin? v/$n25,
2) 4T 1. 47r 3 .
Da=0,87=0) = |/ 7Y(5,0) S (sineos B)| = /2 (sin feos ),
(2) 47r 47r 5
Dyyla=0,8,7y=0) = 3,0 16 (3cos’ B —1) = (3cos g—1),

D j(a=0,8,7=0) = —mga—Oﬁw
DY) (a=0,67y=0) = Dyj(a :&&v:m.
Thus
2 3
‘Df%o(azo,ﬁ,’y:O) = gsm45,
2 3
‘Dgl)o a=0,6,7v=0) = §sin2500825,
2 1 2 2
‘Doyo(a:O,B,’y:O) = Z(Scos g—1)°.

2
It is straightforward to check that an:_g ’Dg%(a =0,8,v= 0)) =1.

5 Rotation matrix for j = 1 states (Sakurai 3.22)

(a). Since J, = £(J — J_), it is clear that the matrix element (j,m’ | J, | j
m, m’ where |m —m/| # 1. Also (j,m | J, | j,m') = ({,m' | Jy | J, >)
So for j = 1, it is enough to compute the matrix elements (1,0 | J, | 1,1) a
From

,m) vanishes for any
by hermiticity of J,.
nd (1,0 | J, | 1,—1).

BN = (LT = T 1,1)) =~ (V3R] 1,0) = f\10>
JIL=Y) = Gl 1 -1 = LE=T) = (Va0 1.0) = 2 1.0)

! Please read Sakurai Eqs. (3.6.46) through (3.6.51) and the accompanying text for the derivation.
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we deduce that (1,0 | J, | 1,1) = (ih)/v/2 and (1,0 | J, | 1,-1) =
representation of J,, in the {| 1,1),| 1,0),| 1,—1)} basis reads

ih .
(j=1) 21 e Om il % —V2i
Jy]_ = V2 0 —% = \/§Z 0
0 % 0 0 V2

(b). A direct computation shows that

‘ B 2 0 —v2i 0 0 —V2i 0
[JI=D]? = <2> ( V2i 0 —V2i ) ( V2i 0 —V2i )
0 V2 0 0 V2 0

—(ih)/+/2. So the matrix

0
0

a0 —/2i 0 2 0 -2 13 0 —V2i 0
[JI=V]3 = (2> ( V2i 0 =2 ) ( 0 4 0 ) 5 ( V2 0 =2 ) .
0 j 0 V2i 0

V2i 0

In other words, [ (7=1) / h] = ( / h, which means that for positive integers n,

a5 m]" = { 797 m] . noad

[Jgsjzl)/hr, neven

Therefore

mt1 [ (1) 2
~ism _ —if3) Jy
¢ * Z (2n +1)! h *

R a7/ AW N VL O A
- 1_ZZ (2n +1)! <17/i +Z (2n)! h

n=0

(1) (1 2
= 1—i (Q]%) sin 8 + (@%) (cos B —1).

(¢). The matrix representation d")(3) of e~ B/h reads

sing [ O —V2i 0
dV(g) = 1- 2 (\/Z 0 ﬂi)HCOSBl)(

2

0 V2i 0
(14 cos B) —%sinﬁ (1 — cos B)
= \% sin 3 cos 3 —\% sin 8
L1—-cospB) Lsing L(1+cosp)
2 V2 2



PHYS 6572 - Fall 2011 PS7 Solutions

6 Neutrino oscillations
By assumption, the initial state of the neutrino is the weak eigenstate
| 1¥(0)) = | ve) = cosB| v1) +sinb| 1),

where | vj) (j = 1,2) are the mass eigenstates, and 6 is the mixing angle. Since the neutrinos are
assumed free, the mass eigenstates evolves in time according to

| vi(8) = e 1M v(0)) = e 5 15(0))  where Ej = \/(m102)2 + (po)?.

The assumption that | v.) is a momentum eigenstate allows us to replace the operator p with the
scalar p. As a result, | ¢) evolves in time according to

[p(t) = e "HIR4(0))

= M [ 9(0)] va) + e M vg | (0))] v2)

e—iE1t/fL —iEst/h

cosf| v1) +e sin 6| vo).

Thus the probability of the system being in | v,) at time ¢ is
. . 2
(v | 0@ = ‘(—sin&(ul | + cosO(va |) (eilElt/h cos 0] v1) 4 e F2/ M gin g 1/2))‘

4 . 2
= (sinfcos 6?)2 ‘—e_lElt/h + e_lEQt/h‘

) . 2
— sin?(20) |ie— i By | e ETECD 4 B
21
= sin’(20) sin” <(E1 ;hEQ)t> .

Knowing that the mass of the neutrino is very small, i.e., ijQ < pe, we may approximate E; in

the usual way:
2 4
141 (mjc2> +0 ([ijQ] >] .
2 pc pc
2 2

1 — 4 274 2,02\ 4
Ey — Ey =pc 7% +0 [m]c ] = (mi = my)e’ + (higher-order terms).
2 (po) pc

Using the shorthand A(m?) = m? — m2, we deduce that

m;c? 2
Ej = \/(mj02)2 + (pe)? = pey |1+ ( " > = pc

So

A(m2)03t> ’

| ) = s 20)sin (SO

which shows that neutrino oscillation occurs at period T' = (47ph)/(A(m?)c?).



