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These notes are based on Sakurai, 2.4, Gottfried and Yan, 2.7, Shankar 8 &
21, and Richard MacKenzie’s Vietnam School of Physics lecture notes (arXiv:quant-
h/0004090v1)

1 Path Integral
Suppose we have the propagator
K(zg,ts,xo,t0) = (T, b5 | 0, t0) = <ZL‘f | e~ tH (ts—to)/h | ZE0>
We can just as easily take two steps
K(zg,ts,xo,t0) = (T, ts | 0,t0) = <a:f | e H(tp—t1)/ho—iH(ti—to)/h | x0>
or we could divide the total time 7" into N steps, with 6 = T'/N. Then
—iHO/hg—iH/h | x0>

K (zg,tr, o, t0) = (g, by | 2o, t0) = (s | €

and then we could insert the identity everywhere along the path.
K(xys,tp,xo,t0) = (xf |e_iH5/h/d:1:N_1| rn_1){TN_1 ]e_iH‘;/h/de_ﬂ Tn_o){TNn_2]...
/ da| 1) (a1 [~ o)
= /dIN_lK(ZEf,tf,I'N_l,tN_l)/dIN_gK(ZEN_l,tN_l,l’N_Q,tN_Q)...
/da:lK(xl,tl,xo,tg)

The amplitude is the sum of all N-legged paths.
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E = /dIldCCQ...dZL‘N_l, Apath = KzN’$N71K1N717$N72...

paths



Let’s consider the 7% term.
K (wje1,25) = (wjen | e 25)
Since ¢ is small we can expand the exponential and we have
K(wj1,7) ~ (j1 | L= iHS[h+ O(0%) | ;)

Then we can insert the identity [ dp;| p;)(p; | and
)
K(zjry,25) ~ [ dpj (@i [ 1= 1H o | p; ) (pj | 25)
)
~ [t 1oy 1) = i (oo |1 1) o)

~ /dpj ziv1 | pi)pj | ©5) — 2(217] + V(i) (i | pi)ips | 25)
N /57]:;1 (e’ zjp1—xj)p;/h _ i%(%+V(xj+1))ei(xj+1—ﬂfj)pj/ﬁ)

~ / gﬁ% zirr=e)pi/h exp (—z%(% + V(xj+1)))

~ /27]:% W(zj41— QEJ)pJ/ﬁexp (—i%H)

Now we write (xj41 — z;)/0 = #; and we have

d
K(zj11,25) ~ /2:% idi5p; /ho—if H

There are N such factors in the amplitude so

Wh/H@ﬂ%észm%m>

7=0
That’s the amplitude for one path. Now integrate over all paths

N-1

K (xn, o) /Hd%/n d—h %NZ(%PJ'—H(%%))

7=0



As N — oo the sum becomes an integral over all time and we write

K(z, o) :/Dx(t)/Dp(t) expz'% /OTdt(jcp—H(x,p))

This is the phase space path integral. If the Hamiltonian has the standard form
2
H = I~ 4 V(x) then we can integrate each of the terms in the sum

5 N— N—-1 dp‘ s N—-1 p2
K(zn,20) = /deﬂeXp ?—LZ /Hﬁexpi%Z(i‘jm—ﬁ)
J=0 j=0 j=0

We use
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/ e—aa:Q—,B:cdx — _662/4(1
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where the above holds for pure imaginary « if it is regarded as a limit, namely if
a = a+1b,a > 0 it is the limit as a — 0. This is what it looks like

2
p M i9ms2 /2
o7 z— ——) = ,[—=¢€n
/ pigir =g 2mi?

Putting it all together

N-1 51 N-1 - 5 mi?
K = d SNy S
/]1;[1 z; exp( iy 2. (xj)> jl:[o < 513 expzh 5 >

m \N2 5 I, mi’
- (27rhi(5> /Ed%exmﬁ ,:0( 2 _V(%))

The sum is an approximation of the action of a path passing through the points

Loy L1y L2y -
K= /Dx(t)eis[z(t)]

is the configuration space path integral.

1.1 Free particle path integral

The configuration space path integral for a free particle is

m N/2 N-—1 25 N-—1 mxz
- <27rhi5> /Ed‘rjeXp [ﬁz( 2J)]
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N2 N i
(27rh2(5> / Hd% P [E

g ( Tjy1 —9@))2]

m \V/2 m i
- (27Thi(5> / H XD [_h 2 (= ]
-1

N/2 , ; 2
27Tm5 H dz;exp 25h ((en —an1)® 4 (Fvo1 — 2n2)” + o + (21 — 20)°)

where xy and xy are 1n1t1al and final points. The integrals are Gaussian and can be
evaluated exactly but since they are coupled it ain’t pretty. Let’s see if we can figure
it out. First let’s define y; = (%h)?% Then

= <27:2@-5>N/2 / ]:1:[11 (2%71) : dy;exp [i ((ynv — ynv—1)" + (YUn-1 — yn—2)> + .. + (1 — %0)*)]

~(i) " () Tl s+ s v+ )

m ,
j=1
Let’s do the y; integration first.
; 2 2y _ 22 2
/dy1 expi ((y2 — y1)* + (y1 —w0)?) = /dy1 expi(y; + ¥y + 2y — 21(y2 + %))

= /dy1 expi(vV2y1 — (Y2 + o) /V2)?

. 7
X expi(y; + yg) exp —§(y2 + 10)°

dz 1 1

— \/_exp—z(z)%xp §(y2 — y0)2

i 9
= —e
\/ 5 exp 2(3/2 Yo)
Next we do the y, integration.

s 1 1

o d _ - 2 - o 2
\/ 5 / Y2 €XP ; <(y3 Y2)” + 2(1/2 Yo) )

s 1 1 1
V2 /dyz exp — o (35 — 2y2(2ys + yo)) exp —;(yi + §yo)2
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_ \/7 exp— - (22— (205 + 0)?/3) exp — (4 + su0)°

T 2277 1
= \/ \/—exp— (2ys + yo) /3)eXp——(y3+2yo)
= \/ 3 eXP—g—(ys yo)

It looks like it goes to

Putting it all together we have

. m \N2 260\ NV (i) T2 1 )
- () () (b

The answer is

. N-1)/2
K = lim < m >N/2 1 27T'Lh($ ( )/ 6im(m/—w)2/2Nﬁ§
N—oo \27ihd \/N m

m 1/2 . / 2
K = 1li < > im(z'—x)?/2Nho
N \2mihNs ) €

Since N6 = T we have

_ < m )1/2 eim(z’—m)2/2hT
2mihT

which is of course the same as we calculated directly. Now on further investigation
we see that

1 2 1 . T
m 2 .m IN — X m 2 7
_ S Bt S A Iy p ( > — Ldt
<2th> Py < T ) 2mint) PG /0 i)

Cute huh. The coordinate space path integral for the free particle, the sum of the
action through every possible point in space, reduces to simply the classical action.
The propagator reduces to two factors, one being the phase exp 7S




1.2 Harmonic oscillator path integral

The coordinate space path integral for the harmonic oscillator is

N/2

— ma:
27rm<5 / H dx; expid Z < ’ f)

Now let’s write

(- 3m) (G $100) (2 o)

Let’s look at the middle term and convert the sum to an integral

/dt oL oL \ _ doL _8_L| /dt oL _doL\ _,
oY T a \or woi? )~ i’ or dtor )Y

The first term is zero because y(y) = y(tn) = 0. So

= g (o) "o [ T ameors 3, (75 - )

The PI over y is independent of the endpoints. It is zero at each end. It will depend
only on the total time T’

; 1/2
K = exp %SdY(T), Y(T) = ( me )

2misinwl’
and if
z(t) = Acos(wt) + Bsinwt, zy = AcoswT + BsinwT, xg=A

Then B = (xy — xgcoswT)/sinwT

1 1
Sy = /(émx'Z - me2> dt



1
= 3 /dt (m(—wAsinwt + wB coswt)® — mw?(A coswt + Bsinwt)?)

1

= 3 / dt mw?*(A%sin® wt + B? cos® wt — 2AB sin wt cos wt
— (A% cos® wt + B?sin® wt + 2AB sin wt cos wt))
1

= - /dt mw?((B? — A?) cos 2wt — 2AB sin 2wt)

2
- %((32 — A?)sin 2wt + 2AB cos 2wt) [T
= %((32 — A?)sin 20T + 2AB(cos 2wT — 1))
in 2wT
— %((mN — zpcoswT)? — x3sin® wT) 2?12 :}T
cos 2wl —1
+2$0([En — I COS WT)(W))
2sinwT’ T
= %((ﬁv + 28 cos 2wT — 2270 coswT) s1n%u 5 ket
4 sin® wT'
2wT — 1
+2x0(x,, — o COS wT)(%))
2 T
= %((w?\, + 2 cos 2wT — 22 N1 COS wT)%
cos 2wl — 1
220z, — Ty (£ 2
+2x0(x, — 2 coswT')( - )
1
= %((290?\, coswT + 213 coswT — 4xN:E0)Sm T
mw
= m((z?\, + 22) coswT — 27 NT)

1.3 Principle of Least Action

Consider the configuration space path integral
K = /Dx(t)eis[z(t)]/h’.

It says that a particle going from initial to final position and time takes all possible
paths. The classical path is included but it gets no special mention. Every path
has precisely unit magnitude. The contributions from the classical path and the
totally wild path are the same. It turns out that the amplitudes interfere with each



other in a very special way. Consider two neighboring paths z(¢) and z'(t) and let
2/ (t) = x(t) + n(t), with n(¢) small. Then we can write the action

S{e') = Slo + 4] = Slal + [ 371 + O0r)

The contribution of the two paths to the PI is

A ~ eiSlE/h <1 + exp % / dtn(t)as[x])

The phase difference between the two paths is % f dtn(t) gigf)] Smaller A larger phase

difference. Even paths that are very close together will have large phase difference
for small & and on average they will interfere destructively.

This is true except for one exceptional path, that which extremizes the action,
namely the classical path z.(t). For this path

Slze +n] = Slad] + O*).

The classical path and a close neighbor will have actions which differ by much less
than two randomly chosen but equally close paths.

If the problem is classical (action > h), paths near the classical path will on
average interfere constructively (small phase difference) whereas for random paths
the interference will be on average destructive. Classically, the particles motion is
governed by the principle that the action is stationary.



