
P6574 HW #1

Due February 1, 2013

1. Inelastic scattering

Show that even if the potential absorbs particles, we can describe it by

Sl(k) = ηl(k)e2iδl (1)

where η(< 1), is called the inelasticity factor and η and δ are real.

(a) By considering the probability currents, show that

σinel =
π

k2

∞∑
l=0

(2l + 1)[1− η2l ]

σel =
π

k2

∞∑
l=0

(2l + 1)(1 + η2l − 2ηl cos 2δl)

and that

σtot =
4π

k
Imf(0) (2)

(b) Consider a ”black disk” which absorbs everything for r ≤ r0 and is ineffective

beyond. Idealize it by η = 0 for l ≤ kr0; η = 1, δ0 = 0 for l > kr0. Show that

σel = σinel ≈ πr20. Replace the sum by an integral and assume kr0 � 1. Why is

σinel always accompanied by σel?

2. Optical theorem

(a) Show that the radial component of the current density due to interference between

the incident and scattered waves is

lim
r→∞

jintr ∼
(
~k
µ

)
1

r
Im
[
ieikr(cos θ−1)f ∗(θ) cos θ + ieikr(1−cos θ)f(θ)

]
(3)

(b) Argue that as long as θ 6= 0, the average of jintr over any small solid angle is zero

because r →∞. [Assume f(θ) is a smooth function.]

(c) Integrate jintr over a tiny cone in the forward direction and show that (see hint)∫
forward cone

jintr r2dΩ = −
(
~k
µ

)
4π

k
Imf(0) (4)
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Thus, if we integrate the total current in the region behind the target, we find that

the interference term (important only in the near-forward direction, behind the

target) produces a depletion of particles, casting a ”shadow”. The total number of

particles(per second) missing in the shadow region is given by the above expression

for the integrated flux. Equating this loss to the product of the incident flux ~k/µ
and the cross section σ, we regain the optical theorem. (Hint: Since θ is small, use

a small angle approximation. In evaluating the upper limit in the θ integration,

use the idea that the limit of a function that oscillates as its argument approaches

infinity is equal to its average value.)

3. Generalized optical theorem

The generalized optcal theorem reads

Tba − T ∗ab = −2πi
∑
i

δ(E − Ei)TbiT ∗ai

= −2πi
∑
f

δ(E − Ei)TfaT ∗fb with E = Ea = Eb

Here the labels a and b specify initial and final states.

(a) Show that the generalized optical theorem follows from the relation

Tba =
〈
Φb | V | ΨR

a

〉
between the T matrix, the free state | Φb〉, the scattering state | ΨR

a 〉 and the

interaction V , and the Lippmann-Schwinger equation.

(b) Show that the optical theorem,

ImTii = −π
∑
f

δ(Ei − Ef )|Tfi|2,

follows from the generalized optical theorem.

(c) Use the generalized optical theorem to show that the scattering matrix,

Sba = δba − 2πiTbaδ(Eb − Ea),

is unitary.

4. Wigner time delay

Measuring time in quantum mechanics is problematic, since there is no such thing

as a time operator. Wigner has shown that the scattering phase shifts can be used
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to define the time a particle is delayed because of interactions with a scatterer. In

order to understand Wigners idea in the simplest possible setting, we consider a one-

dimensional example. We compare two potential profiles labeled V1 and V2. Both

potentials vanish for x > 0,

V1(x) = V2(x) = 0 if x > 0.

The potentials differ for x < 0. For the first potential, we take

V1(x)→∞ if x < 0.

For the second potential, we take an arbitrary dependence on x, but with the condition

that

V2(x)→∞ if x→ −∞.

A schematic picture showing both potentials is shown in Fig. 1.

Obviously, a particle incident from the right will reflect off either potential. However,

the time after which it returns will be longer in the case of potential V2 than in the case

of potential V1. The time the particle reflecting off potential V2 lags behind a particle

reflecting off potential V1 is referred to as the Wigner time delay τW .

V2

0 x

V1

0 x

Figure 1: Schematic drawing of the potentials V1 and V2. The time a particle incident from
the right and reflecting off potential V2 lags behind a particle that reflects off potential V1 is
known as the “Wigner time delay”.

(a) Model the incoming particle by a wavepacket, and find an expression for τW in terms
of the derivative of the scattering phase shift δ to the particle’s energy E.

(b) What is the maximal allowable energy uncertainty for the expression you derived under
(a) to make sense? What does this imply for the relation between the minimal width
of the wavepacket in the temporal domain and the delay time?

Note 1: Besides giving a quantitative relation between the energy-derivative of the scat-
tering phase shift and the delay time, the result you find under (a) proves a very important
qualitative result: The scattering matrix is a fast function of energy if the projectile spends a
long time in the scattering region, and it is a slow function of energy if the projectile spends
only a short time in the scattering region. This duality between time and energy is closely
related to the Heisenberg uncertainty principle.

Note 2: Your analysis of part (b) shows that the Wigner delay time has little practical
relevance as a delay time for particles that are well localized in the time domain. However,
it plays an important role in solid state physics, where it is closely related to the “density of
states”, a quantity that can be measured, e.g., using scanning probe techniques.

Exercise 4.13: Resonances

This exercise addresses properties of scattering states for resonant scattering inside the scat-
tering region. Although the conclusions of this exercise will be general, we restrict our
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the right and reflecting off potential V2 lags behind a particle that reflects off potential V1 is

known as the ”Wigner time delay”.

(a) Model the incoming particle by a wavepacket, and find an expression for τW in

terms of the derivative of the scattering phase shift δ to the particle’s energy E.

(b) What is the maximal allowable energy uncertainty for the expression you derived

under (a) to make sense? What does this imply for the relation between the

minimal width of the wavepacket in the temporal domain and the delay time?
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Note 1: Besides giving a quantitative relation between the energy-derivative of the

scattering phase shift and the delay time, the result you find under (a) proves a very

important qualitative result: The scattering matrix is a fast function of energy if the

projectile spends a long time in the scattering region, and it is a slow function of energy

if the projectile spends only a short time in the scattering region. This duality between

time and energy is closely related to the Heisenberg uncertainty principle.

Note 2: Your analysis of part (b) shows that the Wigner delay time has little practical

relevance as a delay time for particles that are well localized in the time domain.

However, it plays an important role in solid state physics, where it is closely related

to the density of states, a quantity that can be measured, e.g., using scanning probe

techniques.
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