
P6572 HW #11

Due December 5, 2011

1. Sakurai, p. 350, problem 18

Work out the quadratic Zeeman effect for the ground-state hydrogen atom [〈x | 0〉 =

(1/
√
πa30)e

−r/a0 ] due to the usually neglected e2A2/2mec
2-term in the Hamiltonian

taken to first order. Write the energy shift as

∆ = −1

2
χB2

and obtain an expression for diamagnetic susceptibility, χ. (The following definite

integral may be useful: ∫ ∞
0

e−αrrndr =
n!

αn+1
.)

2. Sakurai, p. 348, problem 12

This is similar to the problem we did in class. A system that has three unperturbed

states can be represented by the perturbed Hamiltonian matrixE1 0 a

0 E1 b

a∗ b∗ E2


where E2 > E1. The quantities a and b are to be regarded as perturbations that are

of the same order and are small compared with E2 − E1. Use the second-order nonde-

generate perturbation theory to calculate the perturbed eigenvalues. (Is this procedure

correct?) Then diagonalize the matrix to find the exact eigenvalues. Finally, use the

second-order degenerate perturbation theory. Compare the three results obtained.

3. Sakurai, p. 349, problem 13

Compute the Stark effect for the 2S1/2 and 2P1/2 levels of hydrogen for a field ε suffi-

ciently weak so that eεa0 is small compared to the fine structure, but take the Lamb

shift δ (δ=1057 MHz) into account (that is, ignore 2P1/2 in this calculation). Show

that for eεaz � δ, the energy shifts are quadratic in ε, whereas for eεa0 � δ they are

linear in ε. (The radial integral you need is 〈2s | r | 2p〉 = 3
√

3a0.) Briefly discuss the

consequences (if any) of time reversal for this problem.

4. Sakurai, p. 353, problem 28

A hydrogen atom in its ground state [(n, l,m = (1, 0, 0)] is placed between the plates
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of a capacitor. A time-dependent but spatially uniform electric field (not potential!) is

applied as follows:

E =

{
0 for t < 0.

E0e
−t/τ for t > 0

, (E0 in the positive z− direction)

Using first order time dependent perturbation theory, compute the probability for the

atom to be found at t � τ in each of the three 2p states: (n, l,m) = (2, 1,±1 or 0).

Repeat the problem for the 2s state: (n, l,m) = (2, 0, 0). You need not attempt to

evaluate radial integrals, but perform all other integrations (with respect to angles and

time).

5. Sakurai, p. 354, problem 33

Consider the spontaneous emission of a photon by an excited state. The process is

known to be an E1 transition. Suppose the magnetic quantum number of the atom

decreases by one unit. What is the angular distribution of the emitted photon? Also

discuss the polarization of the photon with attention to angular-momentum conserva-

tion for the whole (atom plus photon) system.

6. Sakurai, p. 355, problem 36

Derive an expression for the density of free particle states in two dimensions, that is,

the two-dimensional analog of

ρ(E)dEdΩ =

(
L

2π

)3(
mk

~2

)
dEdΩ,

(
k ≡ p

~
, E =

p2

2m

)
.

Your answer should be written as a function of k (or E) times dEdφ, where φ is the

polar angle that characterizes the momentum direction in two dimensions.

7. Sakurai, p. 356, problem 38

Linearly polarized light of angular frequency ω is incident on a one electron ”atom”

whose wave function can be approximated by the ground state of a three-dimensional

isotropic harmonic oscillator of angular frequency ω0. Show that the differential cross

section for the ejection of a photoelectron is given by

dσ

dΩ
=

4α~2k3f
m2ωω0

√
π~
mω0

exp

{
− ~
mω0

[
k2f +

(ω
c

)2]}
× sin2 θ cos2 φ exp

[(
2~kfω
mω0c

)
cos θ

]
provided the ejected electron of momentum ~kf can be regarded as being in a plane-

wave state. (The coordinate system used is shown in Figure 5.10, p. 341)

8. Sakurai, p. 356, problem 40

Obtain an expression for τ(2p→ 1s) for the hydrogen atom. Verify that it is equal to

1.6× 10−9 s.
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9. Hyperfine Structure

The hyperfine structure of a level is caused by the interactions of the magnetic moment

of the nucleus with both the orbital and the spin magnetic moments of the electrons.

We shall assume in the following that the hyperfine splitting is much smaller than the

fine structure splitting. As a result of this interaction, the angular momentum J of the

electrons adds on to that of the nucleus I to give a resultant angular momentum F ,

which is the only true constant of the motion. However J2 is still almost a constant

of the motion. Each fine structure level is then split into a hyperfine multiplet with

values of f ranging from |j − i| to j + i.

One can show (See Cohen-Tanoudjii, Chapter XII, and Griffiths chapter 6), that for a

hydrogen atom in the ground state, the hyperfine interaction is

16π

3~2
µBµNgp(S · I)δ3(r)

where I is the spin of the nucleus and gp is the anomalous magnetic moment of the

proton. S is the spin of the electron. Because we are in the ground state, S = J

because L = 0.

Consider in particular the hyperfine structure of the ground state of hydrogen. Compute

the frequency (in megahertz) and the wavelength (in cm) of the radiation emitted in

a transition between the two hyperfine levels. This is the famous hydrogen line of

radioastronomy. Compute the lifetime of the upper level, replacing the electric dipole

moment operator of the usual formula with the magnetic moment operator (this is an

M1 transition). How does the calculated lifetime fit with your knowledge that this line

is actually observed?
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