1. If A and B are two operators that do not commute with each other but which both commute with $[A, B]$, they satisfy

$$
e^{A+B}=e^{A} e^{B} e^{-\frac{1}{2}[A, B]}
$$

(a) To prove this first show that $\left[B, e^{x A}\right]=e^{x A}[B, A] x$. Next define $G(x)=e^{x A} e^{x B}$, and show that

$$
\frac{d G}{d x}=(A+B+[A, B] x) G
$$

Integrate this to obtain the desired result.
(b) More generally, show that for arbitrary A and B

$$
\lim _{\alpha, \beta \rightarrow 0} e^{\alpha A} e^{\beta B}=e^{\alpha A+\beta B+\frac{1}{2} \alpha \beta[A, B]+X}
$$

where X is of higher order in α, β.
2. Sakurai, p.66, problem 29
(a) Verify that for all functions $F(\mathbf{x})$ and $G(\mathbf{p})$ that can be expressed as power series in their arguments that

$$
\left[x_{i}, G(\mathbf{p})\right]=i \hbar \frac{\partial G}{\partial p_{i}}, \quad\left[p_{i}, F(\mathbf{x})\right]=-i \hbar \frac{\partial F}{\partial x_{i}}
$$

(b) Evaluate $\left[x^{2}, p^{2}\right]$.
(c) The classical Poisson bracket is defined as

$$
[A, B]=\sum_{j} \frac{\partial A}{\partial q_{j}} \frac{\partial B}{\partial p_{j}}-\frac{\partial A}{\partial p_{j}} \frac{\partial B}{\partial q_{j}}
$$

Compare your result from part b) with the classical Poisson bracket $\left[x^{2}, p^{2}\right]_{\text {classical }}$.
3. Sakurai, p. 67 problem 30

The translation operator for a finite (spatial) displacement is given by

$$
\mathcal{T}(\mathbf{l})=\exp \left(\frac{-i \mathbf{p} \cdot \mathbf{l}}{\hbar}\right)
$$

where \mathbf{p} is the momentum operator.
(a) Evaluate

$$
\left[x_{i}, \mathcal{T}(\mathbf{l})\right]
$$

(b) Using (a) (or otherwise), demonstrate how the expectation value of $\langle\mathbf{x}\rangle$ changes under translation.

4. Canonical transformation

We know that for any function $F_{1}(q, \bar{q})$, we can generate a canonical transformation and that $K=H+\frac{\partial F_{1}}{\partial t}$. But suppose that we are handed a transformation $(\bar{p}(q, \bar{q}), p(q, \bar{q})$), how can we determine if it is canonical? We could try to find the generating function $F(q, \bar{q})$ such that $\frac{\partial F}{\partial q}=p$, and $\frac{\partial F}{\partial \bar{q}}=-\bar{p}$. Alternatively, supposing for simplicity that $\frac{\partial F}{\partial t}=0$ so that $H=K$, and generalizing q, \bar{q}, p, \bar{p} to vectors, we have that

$$
\begin{equation*}
\dot{\bar{q}}_{i}=\frac{\partial \bar{q}_{i}}{\partial q_{j}} \dot{q}_{j}+\frac{\partial \bar{q}_{i}}{\partial p_{j}} \dot{p}_{j}=\frac{\partial \bar{q}_{i}}{\partial q_{j}} \frac{\partial H}{\partial p_{j}}-\frac{\partial \bar{q}_{i}}{\partial p_{j}} \frac{\partial H}{\partial q_{j}} \equiv\left[\bar{q}_{i}, H\right] \tag{1}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{\partial H}{\partial p_{j}} & =\frac{\partial K}{\partial p_{j}}=\frac{\partial H}{\partial \bar{q}_{k}} \frac{\partial \bar{q}_{k}}{\partial p_{j}}+\frac{\partial H}{\partial \bar{p}_{k}} \frac{\partial \bar{p}_{k}}{\partial p_{j}} \tag{2}\\
\frac{\partial H}{\partial q_{j}} & =\frac{\partial K}{\partial q_{j}}=\frac{\partial H}{\partial \bar{q}_{k}} \frac{\partial \bar{q}_{k}}{\partial q_{j}}+\frac{\partial H}{\partial \bar{p}_{k}} \frac{\partial \bar{p}_{k}}{\partial q_{j}} \tag{3}
\end{align*}
$$

Next substitute Equations 2 and 3 into Equation 1

$$
\begin{aligned}
\dot{\bar{q}}_{i} & =\frac{\partial \bar{q}_{i}}{\partial q_{j}}\left(\frac{\partial H}{\partial \bar{q}_{k}} \frac{\partial \bar{q}_{k}}{\partial p_{j}}+\frac{\partial H}{\partial \bar{p}_{k}} \frac{\partial \bar{p}_{k}}{\partial p_{j}}\right)-\frac{\partial \bar{q}_{i}}{\partial p_{j}}\left(\frac{\partial H}{\partial \bar{q}_{k}} \frac{\partial \bar{q}_{k}}{\partial q_{j}}+\frac{\partial H}{\partial \bar{p}_{k}} \frac{\partial \bar{p}_{k}}{\partial q_{j}}\right) \\
& =\frac{\partial H}{\partial \bar{q}_{k}}\left(\frac{\partial \bar{q}_{i}}{\partial q_{j}} \frac{\partial \bar{q}_{k}}{\partial p_{j}}-\frac{\partial \bar{q}_{i}}{\partial p_{j}} \frac{\partial \bar{q}_{k}}{\partial q_{j}}\right)+\frac{\partial H}{\partial \bar{p}_{k}}\left(\frac{\partial \bar{q}_{i}}{\partial q_{j}} \frac{\partial \bar{p}_{k}}{\partial p_{j}}-\frac{\partial \bar{q}_{i}}{\partial p_{j}} \frac{\partial \bar{p}_{k}}{\partial q_{j}}\right) \\
& =\frac{\partial H}{\partial \bar{q}_{k}}\left[\bar{q}_{i}, \bar{q}_{k}\right]+\frac{\partial H}{\partial \bar{p}_{k}}\left[\bar{q}_{i}, \bar{p}_{k}\right]
\end{aligned}
$$

We see that we recover Hamilton's equations if $\left[\bar{q}_{i}, \bar{q}_{k}\right]=0$ and $\left[\bar{q}_{i}, \bar{p}_{k}\right]=\delta_{i k}$. The transformation $\bar{q}(q, p), \bar{p}(q, p)$ is canonical if $\left[\bar{q}_{i}, \bar{q}_{k}\right]=0$ and $\left[\bar{q}_{i}, \bar{p}_{k}\right]=\delta_{i k}$, where the Poisson bracket of A and B is

$$
[A, B]=\sum_{j} \frac{\partial A}{\partial q_{j}} \frac{\partial B}{\partial p_{j}}-\frac{\partial A}{\partial p_{j}} \frac{\partial B}{\partial q_{j}}
$$

All canonical transformations satisfy the fundamental Poisson bracket relationship.

Generalizing to $2 n$ dimensional phase space, for two arbitrary functions, the Poisson bracket with respect to q, p is independent of the canonical variables that it is expressed in.

$$
[F, G]=\sum_{j=1}^{n}\left(\frac{\partial F}{\partial q_{i}} \frac{\partial G}{\partial p_{i}}-\frac{\partial F}{\partial p_{j}} \frac{\partial G}{\partial q_{i}}\right)
$$

In particular,

$$
\frac{\partial \bar{q}}{\partial q} \frac{\partial \bar{p}}{\partial p}-\frac{\partial \bar{q}}{\partial p} \frac{\partial \bar{q}}{\partial p}=1
$$

is invariant.
Show directly that the transformation

$$
Q=\log \left(\frac{1}{q} \sin p\right), \quad P=q \cot p
$$

is canonical.
5. Momentum operator in position space (Sakurai, p.67, problem 33)
(a) Prove the following:
i.

$$
\left\langle p^{\prime}\right| x|\alpha\rangle=i \hbar \frac{\partial}{\partial p^{\prime}}\left\langle p^{\prime} \mid \alpha\right\rangle,
$$

ii.

$$
\langle\beta| x|\alpha\rangle=\int d p^{\prime} \phi_{\beta}^{*}\left(p^{\prime}\right) i \hbar \frac{\partial}{\partial p^{\prime}} \phi_{\alpha}\left(p^{\prime}\right),
$$

where $\phi_{\alpha}\left(p^{\prime}\right)=\left\langle p^{\prime} \mid \alpha\right\rangle$ and $\phi_{\beta}\left(p^{\prime}\right)=\left\langle p^{\prime} \mid \beta\right\rangle$ are momentum-space wave functions.
(b) What is the physical significance of

$$
\exp \left(\frac{i x \Xi}{\hbar}\right)
$$

where x is the position operator and Ξ is some number with the dimension of momentum? Justify your answer.

6. Harmonic Oscillator Action

Consider the harmonic oscillator, for which the general solution is

$$
x(t)=A \cos \omega t+B \sin \omega t
$$

Express the energy in terms of A and B and note that it does not depend on time. Now choose A and B such that $x(0)=x_{1}$ and $x(T)=x_{2}$. Write down the energy in terms of x_{1}, x_{2}, and T. Show that the action for the trajectory connecting x_{1} and x_{2} is

$$
S_{c l}\left(x_{1}, x_{2}, T\right)=\frac{m \omega}{2 \sin \omega T}\left[\left(x_{1}^{2}+x_{2}^{2}\right) \cos \omega T-2 x_{1} x_{2}\right] .
$$

Verify that

$$
\frac{\partial S_{c l}}{\partial t}=-E .
$$

where

$$
S_{c l}=\int_{0}^{T} L d t
$$

7. Hermitian matrices

Assume that any hermitian matrix can be diagnoalized by a unitary matrix. From this, show that the necessary and sufficient condition that two hermitian matrices can be diagonalized by the same unitary transformation is that they commute.

