
Physics 6572 HW #2 Solutions

References below are to the following textbooks:

• Sakurai, Napolitano, Modern Quantum Mechanics, 2nd edition

• Goldstein, Poole, & Safko, Classical Mechanics , 3rd edition

Problem 1

Suppose that A and B are operators such that

[A, [A,B]] = [B, [A,B]]

= 0

Part a)

We prove the identity:

[An, B] = nAn−1 [A,B]

for any nonnegative integer n. The proof is by induction. The cases n = 0 and n = 1 are trivial. Suppose
that the identity holds for the exponent n− 1. We have:

[An, B] = AnB −BAn

= An−1 [A,B] + [An−1, B]A

= An−1 [A,B] + (n− 1)An−2 [A,B]A

= nAn−1 [A,B]

since [A, [A, B]] = 0. QED. Now suppose that f(A) is a function of A defined by a Taylor series in non-
negative powers of A, where the coefficients of the Taylor series are assumeed to commute with both A

and B. It is easy to see that:

[f(A), B] = f ′(A) [A,B]

where f ′ denotes the formal derivative of f applied to an operator argument A. exA =
∑

n

1

n!
(xA)n is

such a function. Therefore,

[

exA, B
]

= x exA [A,B]

Now define the operator

G(x) ≡ exA exB
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By construction, G(x) is invertible, with G−1(x)= e−xB e−xA. We differentiate w.r.t. x:

dG(x)

dx
=

d exA

dx
exB + exA dexB

dx

= AexA exB + exA exBB

= (A+B) exA exB + [exA, B] exB

= (A+B+x [A,B]) G(x)

Informally, we integrate by separation of variables to obtain:

logG(x)+ k = xA+ xB+
1

2
x2 [A,B]

where k is an integration constant. However, it’s not clear that this is well defined for operators. Instead,
define:

F (x) ≡ xA+ xB+
1

2
x2 [A,B]

Thus, multiplying the above equation by e−F (x) on the left

e−F (x) (G′(x)−F ′(x) G(x)) = 0

Note that:

[F ′(x), F (x)] =

[

A+B+x [A,B], xA+ xB+
1

2
x2 [A,B]

]

=
1

2
x2 [A+B, [A,B]] + x2 [[A,B], A+B]

= 0

since

[A, [A,B]] = [B, [A,B]]

= 0

For any operator satisfying [F ′(x), F (x)] = 0, it’s easy to show that:

d

dx
e−F (x) = −F ′(x) e−F (x)

Thus, the above differential equation becomes:

d

dx

[

e−F (x)G(x)
]

= 0

This is easily integrated:

G(x) = eF (x)G0
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where G0 is an operator which does not depend on x. Checking the special case x = 0, we find G = 1 and
F =0. Therefore G0 = 1. Eliminating F and G in favor of A and B, we find:

exA exB = e
xA+xB+

1

2
x2 [A,B]

Setting x= 1, this becomes:

eA eB = e
A+B+

1

2
[A,B]

Since [A,B] commutes with A and B, this is equivalent to:

eA+B = eA eB e
−

1

2
[A,B]

Part b)

Suppose that α, β≪ 1. Expanding the exponentials in power series’, we find:

eαA eβB =

(

1+αA+
1

2
α2A2 +	 )(

1+ βB+
1

2
β2B2 +	 )

= 1+αA+ βB+
1

2
α2A+αβAB+

1

2
β2B+O((α|β)3)

where O((α|β)3) indicates that the omitted terms contain αm βn with m + n > 3. Take the log of both
sides:

log eαA eβB =

(

αA+ βB+
1

2
α2A+αβAB+

1

2
β2B+O((α|β)3)

)

−
1

2

(

αA+ βB+
1

2
α2A+αβAB+

1

2
β2B+O((α|β)3)

)

2

+	
= αA+ βB+

1

2
α2A+αβAB+

1

2
β2B −

1

2
(αA+ βB)2 +O((α|β)3)

= αA+ βB+αβAB −
1

2
αβ {A,B}+O((α|β)3)

= αA+ βB+
1

2
αβ [A,B] +O((α|β)3)

Thus, exponentiating once more:

eαA eβB = e
αA+βB+

1

2
αβ [A,B]+O((α|β)3)

Problem 2

Part a)

Recall from problem 1 that if A and B both commute with [A,B] then

[f(A), B] = f ′(A) [A,B]
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where f(A) can be defined using a Taylor series in A.

Setting A= x and B= p, we find:

[f(x), p] = f ′(x) [x, p]

= i~f ′(x)

Similarly, setting A= p and B=x, we find:

[g(p), x] = g ′(p) [p, x]

= − i~ g ′(p)

In either case, f and g may depend on other operators which commute with both x and p. Thus, the for-
mulae generalize immediately to multidimensional systems (i.e. systems with a set of x coordinates, xi):

[xi, G(p)] = i~
∂G

∂ pi

[pi, F (x)] = − i~
∂F

∂xi

where we use the commutation relations:

[xi, xj] = 0

[pi, pj] = 0

[xi, pj] = i~ δij

Part b)

Using part a, we find:

[

x, p2
]

= 2i~p

Thus,

[

x2, p2
]

= x2 p2− p2x2

= x
[

x, p2
]

+
[

x, p2
]

x

= 2i~ {x, p}

= 2i~ (2xp− [x, p])

= 4i~xp+2~
2

Part c)

Now consider the classical Poisson bracket:

[

x2, p2
]

classical
=

∂x2

∂x

∂p2

∂p
−
∂ x2

∂p

∂ p2

∂x

= 4x p
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Equation (1.6.47) in Sakurai states the general principle

[, ]
classical

→
1

i~
[, ]

But

4i~xp � 4i~xp+2~
2

This is what’s known as an ordering ambiguity . In the classical theory, we are free to rewrite:

[

x2, p2
]

classical
= 4x p

= 2 (xp+ px)

= 4px

since x and p are just numbers. However, upon quantization, only the middle line reproduces the correct
quantum mechanical result, namely

[

x2, p2
]

= 2i~ {x, p}

Thus, given a classical system, there may be more than one way to quantize it consistent with the corre-
spondence principle, depending on what orderings we choose upon promoting the Poisson brackets to
commutators.1 As Sakurai states on p. 84, “classical mechanics can be derived from quantum mechanics,
but the opposite is not true.”

Problem 3

Define the translation operator:

T (l) ≡ exp

[

p · l

i~

]

Part a)

Using the result of part (a) of the previous problem, we find:

[xi, T (l)] = i~

(

1

i~
li

)

exp

[

p · l

i~

]

= liT (l)

Part b)

Consider a state |ψ〉. Now translate |ψ〉 using T (l):

|ψ ′〉 = T (l) |ψ〉

1. Since the [x2
, p

2] commutator can be derived from the [x, p] commutator, which has no ordering ambiguities, this does not
happen in this simple case. However, it does occur for certain (more complicated) systems.

Physics 6572 PS#2 Solutions

5



Thus,

〈x〉′ = 〈ψ ′|x|ψ ′〉

=
〈

ψ |T −1(l)xT (l)|ψ
〉

=
〈

ψ |T −1(l) T (l) x + T −1(l) [x, T (l)] |ψ
〉

= 〈ψ |x|ψ〉+
〈

ψ |T −1(l) l T (l)|ψ
〉

= 〈x〉+ l

since l is an ordinary vector, and therefore commutes with T (l), and 〈ψ |ψ〉 = 1. This is just what one
would expect the translation operator to do.

Problem 4

Consider the transformation:

Q = log

(

1

q
sin p

)

P = q cot p

As explanined in the assignment, the transformation is canonical iff the Poisson bracket [Q, P ]q,p = 1
(Goldstein section 9.5). We find:

[Q,P ]q,p =
∂Q

∂q

∂P

∂p
−
∂Q

∂p

∂P

∂q

=

(

−
1

q

)

(

− q csc2 p
)

−

(

1

sin p
cos p

)

(cot p)

= csc2 p− cot2 p

= 1

so the transformation is indeed canonical.

Another way to show that this transformation is canonical is to obtain the generating function (Goldstein
section 9.1). We solve for q in terms of Q and p using the first equation:

q = e−Q sin p

Putting this into the second equation, we find:

P = e−Q cos p

Referring to Goldstein table 9.1, we look for a generating function of the form:

F = F3(p, Q) + p q

where F3 must satisfy:

q = −
∂F3

∂p

P = −
∂F3

∂Q
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The answer is easy to guess:

F3 = e−Q cos p

Thus, the transformation is canonical.

Problem 5

This problem is easier if we start with part b:

Part b)

Consider the operator

K(Ξ) = exp

[

ixΞ

~

]

The analogous operator involving the momentum generated translations (shifts in position). Thus, we
guess that this operator generates boosts (shifts in momentum).

To check this, we repeat the computation of problem 3:

[p,K(Ξ)] = − i~

(

iΞ

~

)

K(Ξ)

= Ξ K(Ξ)

Thus, for a state |ψ〉, the boosted state is given by:

|ψ ′〉 = K(Ξ) |ψ〉

We find:

〈p〉′ = 〈ψ ′|p|ψ ′〉

=
〈

ψ |K−1(Ξ) pK(Ξ)|ψ
〉

=
〈

ψ |K−1(Ξ) K(Ξ) p+K−1(Ξ) [p, K(Ξ)] |ψ
〉

= 〈ψ |p|ψ〉+
〈

ψ |K−1(Ξ)Ξ K(Ξ)|ψ
〉

= 〈p〉+Ξ

Thus, K generates boosts as expected. For a momentum eigenstate:

p |q ′〉 = p K(∆ q) |q〉

= [p, K(∆q)] |q〉+K(∆q) p |q〉

= (q+ ∆q)K(∆q) |q〉

Thus,

K(∆q) |q〉 = |q+ ∆q〉
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Part a)

i)

We loosely follow the logic of Sakurai eqns 1.7.15 – 1.7.17. x is the “generator” of boosts:

x = − i~ lim
∆p→0

1

∆p
(K(∆p)−K(0))

where K(0)= id. Consider x acting on a state |α〉:

x |α〉 = − i~ lim
∆p→0

1

∆p
(K(∆p) |α〉 − |α〉)

Contract with |p〉 to obtain:

〈p|x|α〉 = − i~ lim
∆p→0

〈p−∆p |α〉− 〈p|α〉

∆p

= i~
∂

∂ p
〈p|α〉

where 〈p|K(∆p)= 〈p−∆p|.

ii)

Now consider the the matrix elements of x:

〈β |x|α〉 =

∫

dp′ 〈β |p′〉〈p′|x|α〉

=

∫

dp′ 〈β |p′〉i~
∂

∂p′
〈p′|α〉

=

∫

dp′ φβ
⋆ (p′)

(

i~
∂

∂p′

)

φα(p′)

where

φα(p′) ≡ 〈p′|α〉

φβ(p′) ≡ 〈p′|β 〉

Problem 6

A classical harmonic oscillator has the Lagrangian:

L =
1

2
mẋ2−

1

2
mω2x2

The equation of motion is just:

ẍ = −ω2x
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The general solution takes the form:

x(t) = A cosωt+B sinωt

The total energy is:

E =
1

2
mẋ2 +

1

2
mω2x2

Putting in the above solution:

E =
1

2
m ω2 (−A sinωt+B cos ωt)2 +

1

2
m ω2 (A cosωt+B sinωt)2

=
1

2
mω2

(

A2 +B2
)

Suppose that x(0) =x1 and x(T ) =x2 for some time T . Thus,

A = x1

A cos ωT +B sinωT = x2

Solving for B in terms of x1, x2 and T , we find:

B =
1

sinωT
[x2−x1 cos ωT ]

Thus,

E =
1

2
mω2

(

x1
2 +

1

sin2 ωT
[x2− x1 cos ωT ]2

)

=
mω2

2 sin2 ωT

(

x1
2 + x2

2− 2x1x2 cos ωT
)

To compute the action, we first evaluate the Lagrangian:

L =
1

2
m ω2 (−A sinωt+B cos ωt)2−

1

2
m ω2 (A cosωt+B sinωt)2

=
1

2
mω2

(

B2−A2
)(

cos2 ω t− sin2 ωt
)

− 2mω2AB sinωt cosωt

=
1

2
mω2

[(

B2−A2
)

cos 2ω t− 2AB sin 2ω t
]

Integrating, we obtain:

Scl =

∫

0

T

L dt

=
1

4
mω

[(

B2−A2
)

sin 2ω t+ 2AB cos 2ω t
]

t=0

t=T

=
1

4
mω

[(

B2−A2
)

sin 2ωT + 2AB (cos 2ωT − 1)
]

=
1

2
mω sinωT

[(

B2−A2
)

cos ωT − 2AB sinωT
]
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Putting in the formulae for A and B in terms of x1, x2 and T , we find:

(

B2−A2
)

cos ωT − 2AB sinωT =
1

sin2 ωT
[x2−x1 cos ωT ]2 cosωT − x1

2 cosωT − 2x1 [x2− x1 cos ωT ]

=
1

sin2 ωT

[

cos ωT
[

x1
2 + x2

2
]

− 2 x1x2

]

Thus,

Scl(x1, x2, T ) =
mω

2 sinωT

[(

x1
2 + x2

2
)

cos ωT − 2 x1x2

]

Suppose we vary the time taken to travel between x1 and x2 while fixing the positions x1 and x2. Thus,

∂Scl

∂t
≡

∂Scl

∂T

∣

∣

∣

∣

x1,x2

=
1

2
mω2

−
[(

x1
2 + x2

2
)

sinωT
]

sinωT −
[(

x1
2 + x2

2
)

cos ωT − 2x1x2

]

cosωT

sin2 ωT

= −
mω2

2 sin2 ωT

[

x1
2 + x2

2− 2 x1x2 cosωT
]

= −E

This is the Hamilton-Jacobi equation for the 1D simple harmonic oscillator (see Goldstein section 10.1).

Problem 7

Suppose that A and B are commuting Hermitean matrices. We choose a basis |a〉 of eigenvectors of A
with eigenvalues λa. We find:

A(B |a〉) = B(A |a〉) = λaB |a〉

Thus B |a〉 is also an eigenvector of A for any eigenvector |a〉 of A.

There are two possibilities:

1. If the eigenvalue λa has no degeneracy, then we must have B |a〉 ∝ |a〉, so that |a〉 is also an eigen-
vector of B.

2. If, on the other hand, there exists a degenerate subspace {|α〉}, all with eigenvalue λa under A,
then B may have a nontrivial action within this subspace. Since B restricted to this subspace is
still Hermitean, we can diagonalize it within this subspace by a change of basis. As A = λa 1 when
restricted to this subspace, it remains diagonal under the change of basis.

Applying either 1 or 2 to each degenerate subspace, we obtain a basis |a′〉 of eigenvectors, which diagonal-
izes both A and B:

A =
∑

a′

λa′

(A)
|a′〉〈a′|

B =
∑

a′

λa′

(B)
|a′〉〈a′|

This procedure can be iterated for any set of n> 2 commuting Hermitean operators (observables).
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Conversely, suppose that A and B can be simultaneous diagonalized in some basis |a〉:

A =
∑

a

λa
(A)

|a〉〈a|

B =
∑

a

λa
(B)

|a〉〈a|

Thus,

AB =
∑

a,b

λa
(A)
λb

(B)
|a〉〈a|b〉〈b| =

∑

a

λa
(A)
λa

(B)
|a〉〈a| = BA

so A and B commute.
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