Due September 16, 2011

1. Consider a 1-dimensional hamiltonian $H=\frac{p^{2}}{2 m}+V(x),[x, p]=i \hbar$ and $H\left|\phi_{n}\right\rangle=E_{n}\left|\phi_{n}\right\rangle$
(a) Show that $\left\langle\phi_{n}\right| p\left|\phi_{n^{\prime}}\right\rangle=\alpha\left\langle\phi_{n}\right| x\left|\phi_{n^{\prime}}\right\rangle$.

Determine α.
(b) Derive the "sum rule"

$$
\left.\sum_{n^{\prime}}\left(E_{n}-E_{n^{\prime}}\right)^{2}\left|\left\langle\phi_{n}\right| x\right| \phi_{n^{\prime}}\right\rangle\left.\right|^{2}=\frac{\hbar^{2}}{m^{2}}\left\langle\phi_{n}\right| p^{2}\left|\phi_{n}\right\rangle
$$

2. Canonical transformation and simple harmonic motion

The hamiltonian is

$$
H=\frac{p^{2}}{2 m}+\frac{1}{2} k q^{2}
$$

Consider the generating function

$$
F_{1}(q, \bar{q})=\frac{m}{2} \omega q^{2} \cot \bar{q}
$$

where $\omega=\sqrt{k / m}$ and the equations relating old and new coordinates

$$
\frac{\partial F_{1}}{\partial q}=p, \quad \frac{\partial F_{1}}{\partial \bar{q}}=-\bar{p}, \quad K(\bar{q}, \bar{p})=H(p, q)+\frac{\partial F_{1}}{\partial t}
$$

(a) Determine q and p in terms of \bar{q} and \bar{p} and write $K(\bar{q}, \bar{p})=H(q, p)$.
(b) Use Hamilton's equations to write the equations of motion in the transformed coordinate system.
(c) Integrate the equations of motion in the \bar{q}, \bar{p} system. To what physical quantities do \bar{q} and \bar{p} correspond?
(d) Transform back to the q, p system to determine $q(t)$ and $p(t)$

3. Expectation value

(a) Show that for a real wave function $\psi(x)$, the expectation value of momentum $\langle p\rangle=0$. (Hint: Show that the probabilities for the momenta $\pm p$ are equal.) Generalize this result to the case $\psi=c \psi_{r}$, where ψ_{r}, is real and c an arbitrary (real or complex) constant. (Recall that $|\psi\rangle$ and $\alpha|\psi\rangle$ are physically equivalent.)
(b) Show that if $\psi(x)$ has expectation value $\langle p\rangle, e^{i p_{0} x / \hbar} \psi(x)$ has expectation value $\langle p\rangle+p_{0}$.

4. Harmonic oscillator

For the harmonic oscillator show that

$$
\langle a(t)\rangle=e^{-i \omega t}\langle a(0)\rangle \quad \text { and that }\left\langle a^{\dagger}(t)\right\rangle=e^{i \omega t}\left\langle a^{\dagger}(0)\right\rangle .
$$

5. Sakurai, p. 64, problem 18

(a) The simplest way to derive the Schwartz inequality goes as follows. First observe

$$
\left(\langle\alpha|+\lambda^{*}\langle\beta|\right) \cdot(|\alpha\rangle+\lambda|\beta\rangle) \geq 0
$$

for any complex number λ; then choose λ in such a way that the preceding inequality reduces to the Schwartz inequality.
(b) Show that the equality sign in the generalized uncertainty relation holds if the state in question satisfies

$$
\Delta A|\alpha\rangle=\lambda \Delta B|\alpha\rangle
$$

with λ purely imaginary.
(c) Explicit calculations using the usual rules of wave mechanics show that the wave function for a Gauussian wave packet given by

$$
\left\langle x^{\prime} \mid \alpha\right\rangle=\left(2 \pi d^{2}\right)^{-\frac{1}{4}} \exp \left[\frac{i\langle p\rangle x^{\prime}}{\hbar}-\frac{\left(x^{\prime}-\langle x\rangle\right)^{2}}{4 d^{2}}\right]
$$

satisfies the minimum uncertainty relation

$$
\sqrt{\left\langle(\Delta x)^{2}\right\rangle} \sqrt{\left\langle(\Delta p)^{2}\right\rangle}=\frac{\hbar}{2}
$$

Prove that the requirement

$$
\left\langle x^{\prime}\right| \Delta x|\alpha\rangle=\text { (imaginary number) }\left\langle x^{\prime}\right| \Delta p|\alpha\rangle
$$

is indeed satisfied for such a Gaussian wave packet, in agreement with (b).

6. Sakurai, p. 143, problem 1

Consider the spin-precession problem discussed in the text. It can also be solved in the Heisenberg picture. Using the Hamiltonian

$$
H=-\left(\frac{e B}{m c}\right) S_{z}=\omega S_{z}
$$

write the Heisenberg equations of motion for the time-dependent operators $S_{x}(t), S_{y}(t)$, and $S_{z}(t)$. Solve them to obtain $S_{x, y, z}$ as functions of time.

7. Hamilton-Jacobi equation

We can also analyze the harmonic oscillator using Hamilton-Jacobi theory. The HamiltonJacobi equation in one-dimension is

$$
\frac{1}{2 m}\left(\frac{\partial S}{\partial q}\right)^{2}+V(q)+\frac{\partial S}{\partial t}=0
$$

$S(q, \bar{p})$ is the generator of the canonical transformation from $H(q, p)$ to $K(\bar{q}, \bar{p})=0$. The old and new coordinates are related by

$$
\frac{\partial S}{\partial q}=p, \quad \frac{\partial S}{\partial \bar{p}}=\bar{q}
$$

Since $K(\bar{q}, \bar{p})=0, \dot{\bar{p}}=-\frac{\partial K}{\partial \bar{q}}=0$ and \bar{p} is a constant of the motion.
Solve the Hamilton Jacobi equation for the harmonic oscillator Hamiltonian

$$
H(p, q)=\frac{p^{2}}{2 m}+\frac{1}{2} k q^{2}
$$

Note that the generating function depends on q, t and a constant of the motion $\bar{p}=\alpha$.
(a) Since the explicit dependence of S on t is involved only in the last term, a solution can be found of the form

$$
S(q, \alpha, t)=W(q, \alpha)-\alpha t
$$

Find $W(q, \alpha)$ and $S(q, \alpha, t)$.
(b) Differentiate S to determine \bar{q}, (Hint: $\frac{\partial S}{\partial \alpha}=\bar{q}$)
(c) Solve for q in terms of t and the integration constants.
(d) Suppose at time $t=0$ that particle is initially stationary, $p(0)=0$, but is displaced from equilibrium by $q(0)$. Determine $\bar{p}=\alpha$, and \bar{q} in terms of the initial conditions.

