P6572 HW #3 Due September 16, 2011

- 1. Consider a 1-dimensional hamiltonian $H = \frac{p^2}{2m} + V(x)$, $[x, p] = i\hbar$ and $H|\phi_n\rangle = E_n|\phi_n\rangle$
 - (a) Show that $\langle \phi_n | p | \phi_{n'} \rangle = \alpha \langle \phi_n | x | \phi_{n'} \rangle$. Determine α .
 - (b) Derive the "sum rule"

$$\sum_{n'} (E_n - E_{n'})^2 |\langle \phi_n \mid x \mid \phi_{n'} \rangle|^2 = \frac{\hbar^2}{m^2} \left\langle \phi_n \mid p^2 \mid \phi_n \right\rangle$$

2. Canonical transformation and simple harmonic motion The hamiltonian is

$$H = \frac{p^2}{2m} + \frac{1}{2}kq^2$$

Consider the generating function

$$F_1(q,\bar{q}) = \frac{m}{2}\omega q^2 \cot \bar{q}$$

where $\omega = \sqrt{k/m}$ and the equations relating old and new coordinates

$$\frac{\partial F_1}{\partial q} = p, \qquad \frac{\partial F_1}{\partial \bar{q}} = -\bar{p}, \quad K(\bar{q},\bar{p}) = H(p,q) + \frac{\partial F_1}{\partial t}$$

- (a) Determine q and p in terms of \bar{q} and \bar{p} and write $K(\bar{q}, \bar{p}) = H(q, p)$.
- (b) Use Hamilton's equations to write the equations of motion in the transformed coordinate system.
- (c) Integrate the equations of motion in the \bar{q}, \bar{p} system. To what physical quantities do \bar{q} and \bar{p} correspond?
- (d) Transform back to the q, p system to determine q(t) and p(t)

3. Expectation value

- (a) Show that for a real wave function $\psi(x)$, the expectation value of momentum $\langle p \rangle = 0$. (Hint: Show that the probabilities for the momenta $\pm p$ are equal.) Generalize this result to the case $\psi = c\psi_r$, where ψ_r , is real and c an arbitrary (real or complex) constant. (Recall that $|\psi\rangle$ and $\alpha |\psi\rangle$ are physically equivalent.)
- (b) Show that if $\psi(x)$ has expectation value $\langle p \rangle$, $e^{ip_0 x/\hbar} \psi(x)$ has expectation value $\langle p \rangle + p_0$.

4. Harmonic oscillator

For the harmonic oscillator show that

$$\langle a(t) \rangle = e^{-i\omega t} \langle a(0) \rangle$$
 and that $\langle a^{\dagger}(t) \rangle = e^{i\omega t} \langle a^{\dagger}(0) \rangle$.

5. Sakurai, p. 64, problem 18

(a) The simplest way to derive the Schwartz inequality goes as follows. First observe

$$\left(\left\langle \alpha \mid +\lambda^* \langle \beta \mid \right) \cdot \left(\mid \alpha \rangle + \lambda \mid \beta \rangle\right) \ge 0$$

for any complex number λ ; then choose λ in such a way that the preceding inequality reduces to the Schwartz inequality.

(b) Show that the equality sign in the generalized uncertainty relation holds if the state in question satisfies

$$\Delta A \mid \alpha \rangle = \lambda \Delta B \mid \alpha \rangle$$

with λ purely *imaginary*.

(c) Explicit calculations using the usual rules of wave mechanics show that the wave function for a Gauussian wave packet given by

$$\langle x' \mid \alpha \rangle = (2\pi d^2)^{-\frac{1}{4}} \exp\left[\frac{i\langle p \rangle x'}{\hbar} - \frac{(x' - \langle x \rangle)^2}{4d^2}\right]$$

satisfies the minimum uncertainty relation

$$\sqrt{\langle (\Delta x)^2 \rangle} \sqrt{\langle (\Delta p)^2 \rangle} = \frac{\hbar}{2}.$$

Prove that the requirement

 $\langle x' \mid \Delta x \mid \alpha \rangle = (\text{imaginary number}) \langle x' \mid \Delta p \mid \alpha \rangle$

is indeed satisfied for such a Gaussian wave packet, in agreement with (b).

6. Sakurai, p. 143, problem 1

Consider the spin-precession problem discussed in the text. It can also be solved in the Heisenberg picture. Using the Hamiltonian

$$H = -\left(\frac{eB}{mc}\right)S_z = \omega S_z,$$

write the Heisenberg equations of motion for the time-dependent operators $S_x(t), S_y(t)$, and $S_z(t)$. Solve them to obtain $S_{x,y,z}$ as functions of time.

7. Hamilton-Jacobi equation

We can also analyze the harmonic oscillator using Hamilton-Jacobi theory. The Hamilton-Jacobi equation in one-dimension is

$$\frac{1}{2m} \left(\frac{\partial S}{\partial q}\right)^2 + V(q) + \frac{\partial S}{\partial t} = 0$$

 $S(q, \bar{p})$ is the generator of the canonical transformation from H(q, p) to $K(\bar{q}, \bar{p}) = 0$. The old and new coordinates are related by

$$\frac{\partial S}{\partial q} = p, \qquad \frac{\partial S}{\partial \bar{p}} = \bar{q}$$

Since $K(\bar{q}, \bar{p}) = 0$, $\dot{\bar{p}} = -\frac{\partial K}{\partial \bar{q}} = 0$ and \bar{p} is a constant of the motion. Solve the Hamilton Jacobi equation for the harmonic oscillator Hamiltonian

$$H(p,q) = \frac{p^2}{2m} + \frac{1}{2}kq^2$$

Note that the generating function depends on q, t and a constant of the motion $\bar{p} = \alpha$.

(a) Since the explicit dependence of S on t is involved only in the last term, a solution can be found of the form

$$S(q, \alpha, t) = W(q, \alpha) - \alpha t$$

Find $W(q, \alpha)$ and $S(q, \alpha, t)$.

- (b) Differentiate S to determine \bar{q} , (Hint: $\frac{\partial S}{\partial \alpha} = \bar{q}$)
- (c) Solve for q in terms of t and the integration constants.
- (d) Suppose at time t = 0 that particle is initially stationary, p(0) = 0, but is displaced from equilibrium by q(0). Determine $\bar{p} = \alpha$, and \bar{q} in terms of the initial conditions.