1. SHO propagator

We know that given the eigenfunctions and the eigenvalues we can construct the propagator:

$$
\begin{equation*}
K\left(x, t ; x^{\prime}, t^{\prime}\right)=\sum_{n} \psi_{n}(x) \psi_{n}^{*}\left(x^{\prime}\right) e^{-i E_{n}\left(t-t^{\prime}\right) / \hbar} \tag{1}
\end{equation*}
$$

Consider the reverse process (since the path integral approach gives K directly), for the case of the harmonic oscillator where

$$
K\left(x, t ; x^{\prime}, 0\right)=\sqrt{\frac{m \omega}{2 \pi i \hbar \sin \omega t}} \exp \left\{\frac{i m \omega}{2 \hbar \sin \omega t}\left[\left(x^{2}+x^{\prime 2}\right) \cos \omega t-2 x x^{\prime}\right]\right\}
$$

(a) Set $x=x^{\prime}=t^{\prime}=0$. By expanding both sides of Equation 1 you should find that $E=\hbar \omega / 2,5 \hbar \omega / 2,9 \hbar \omega / 2, \ldots$, etc. What happened to the levels in between?
(b) Now consider the extraction of the eigenfunctions. Let $x=x^{\prime}$ and $t^{\prime}=0$. Find $E_{0}, E_{1},\left|\psi_{0}(x)\right|^{2}$, and $\left|\psi_{1}(x)\right|^{2}$ by expanding in powers of $a=\exp (i \omega t)$.

2. Sakurai, p. 149, problem 30

The propagator in position space is (2.5.26), namely,

$$
K\left(\mathbf{x}^{\prime \prime}, t, \mathbf{x}^{\prime}, t_{0}\right)=\sum_{a^{\prime}}\left\langle\mathbf{x}^{\prime \prime}\right| \exp \left(\frac{-i H t}{\hbar}\right)\left|a^{\prime}\right\rangle\left\langle a^{\prime}\right| \exp \left(\frac{i H t_{0}}{\hbar}\right)\left|\mathbf{x}^{\prime}\right\rangle=\left\langle\mathbf{x}^{\prime \prime}, t \mid \mathbf{x}^{\prime}, t_{0}\right\rangle
$$

The analogous propagator in momentum space is given by $\left\langle\mathbf{p}^{\prime \prime}, t \mid \mathbf{p}^{\prime}, t_{0}\right\rangle$. Derive an explicit expression for $\left\langle\mathbf{p}^{\prime \prime}, t \mid \mathbf{p}^{\prime}, t_{0}\right\rangle$ for the free particle case.

3. Green's function

Derive the Green's function $G\left(x, x^{\prime}, E\right)$ for a free particle in one dimension, where

$$
\left(\frac{-\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}-E\right) G\left(x, x^{\prime}, E\right)=\delta\left(x-x^{\prime}\right)
$$

4. Sakurai, p. 149, Problem 26

Consider a particle moving in one dimension under the influence of a potential $V(x)$. Suppose its wave function can be written as $\exp [i S(x, t) / \hbar]$. Prove that $S(x, t)$ satisfies the classical Hamilton-Jacobi equation to the extent that \hbar can be regarded as small in some sense. Show how one may obtain the correct wave function for a plane wave by starting with the solution of the classical Hamilton-Jacobi equation with $V(x)$ set equal to zero. Why do we get the exact wave function in this particular case?

5. Coherent state

A coherent state of a one-dimensional simple harmonic oscillator is defined to be an eigenstate of the (non-Hermitian) annihilation operator a :

$$
a|\lambda\rangle=\lambda|\lambda\rangle,
$$

where λ is, in general, a complex number.
(a) Prove that

$$
|\lambda\rangle=e^{-|\lambda|^{2} / 2} e^{\lambda a^{\dagger}}|0\rangle
$$

is a normalized coherent state.
(b) Prove the minimum uncertainty relation for such a state.
(c) Write $|\lambda\rangle$ as

$$
|\lambda\rangle=\sum_{n=0}^{\infty} f(n)|n\rangle
$$

Show that the distribution of $|f(n)|^{2}$ with respect to n is of the Poisson form. Find the most probable value of n, hence of E.
(d) Show that a coherent state can also be obtained by applying the translation (finite-displacement) operator $e^{-i p l / \hbar}$ (where p is the momentum operator, and l is the displacement distance) to the ground state.
(e) Show that the wave function of the coherent state is

$$
\psi_{\lambda}(x)=\langle x \mid \lambda\rangle=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-\lambda^{2} / 2} e^{-(m \omega / 2 \hbar) x^{2}} e^{\sqrt{(2 m \omega / \hbar)} \lambda x}
$$

Start by using $a|\lambda\rangle=\lambda|\lambda\rangle$ in the coordinate representation. Fix the normalization by demanding that $\left\langle\lambda^{\prime} \mid \lambda\right\rangle=e^{\lambda^{*} \lambda}$. (Hint: The identity $e^{A} e^{B}=e^{B} e^{A} e^{[A, B]}$ which is true if $[A, B]$ commutes with A and B might be useful.) Show that $\psi_{\lambda}(x, t)$ evolves with the time like classical coordinates given that $|\lambda\rangle \rightarrow\left|\lambda e^{-i \omega t}\right\rangle$.

6. Sakurai, p. 150, problem 35

Consider the Hamiltonian of a spinless particle of charge q. In the presence of a static magnetic field, the interaction terms can be generated by

$$
\mathbf{p}_{\text {operator }} \rightarrow \mathbf{p}_{\text {operator }}-\frac{q \mathbf{A}}{c},
$$

where \mathbf{A} is the appropriate vector potential. Suppose, for simplicity, that the magnetic field \mathbf{B} is uniform in the positive z-direction. Prove that the above prescription indeed leads to the correct expression for the interaction of the orbital magnetic moment $(q / 2 m c) \mathbf{L}$ with the magnetic field \mathbf{B}. Show that there is also an extra term proportional to $B^{2}\left(x^{2}+y^{2}\right)$, and comment briefly on it physical significance.

7. Lorentz force law

Show that if we modify the classical Lagrangian to include the interaction of a charged particle with a magnetic field so that

$$
L \rightarrow L+\frac{q}{c} \mathbf{v} \cdot \mathbf{A}(x)
$$

that Lagrange's equations yield the Lorentz force law

$$
m \frac{d^{2} \mathbf{x}}{d t^{2}}=\frac{q}{c} \mathbf{v} \times \mathbf{B}
$$

