P6572 HW #4
Due September 23, 2011

1. SHO propagator

We know that given the eigenfunctions and the eigenvalues we can construct the propagator:

K(z,t;2',t) Zlﬂn _ZE"(t )/ (1)

Consider the reverse process (since the path integral approach gives K directly), for the case of the
harmonic oscillator where
K(x,t;2',0) = e { e
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(a) Set z =2’ = ¢ = 0. By expanding both sides of Equation 1 you should find that
E = hw/2,5hw/2,9hw/2, ...,etc. What happened to the levels in between?
(b) Now consider the extraction of the eigenfunctions. Let z = 2’ and ¢ = 0. Find

Eo, E1, [1bo(2)|?, and |11 (x)|? by expanding in powers of a = exp(iwt).

2. Sakurai, p. 149, problem 30
The propagator in position space is (2.5.26), namely,
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The analogous propagator in momentum space is given by (p”,t | p’, o). Derive an explicit expression for

(p”,t| p,to) for the free particle case.

3. Green’s function
Derive the Green’s function G(z, 2, E) for a free particle in one dimension, where
h? 0? , ,
<2m 922 —E) Gz, ,E)=0(x — ")
4. Sakurai, p. 149, Problem 26
Consider a particle moving in one dimension under the influence of a potential V' (z). Suppose its wave
function can be written as expliS(z,t)/h]. Prove that S(z,t) satisfies the classical Hamilton-Jacobi
equation to the extent that A can be regarded as small in some sense. Show how one may obtain the

correct wave function for a plane wave by starting with the solution of the classical Hamilton-Jacobi

equation with V' (z) set equal to zero. Why do we get the exact wave function in this particular case?



5. Coherent state

A coherent state of a one-dimensional simple harmonic oscillator is defined to be an eigenstate of the

(non-Hermitian) annihilation operator a:

al \) = Al A),

where ) is, in general, a complex number.

(a)

Prove that

| A) = e—IA|2/2€AaT, 0)
is a normalized coherent state.
Prove the minimum uncertainty relation for such a state.

Write | \) as
[A) = f(n)|n).
n=0

Show that the distribution of | f(n)|? with respect to n is of the Poisson form. Find the most probable

value of n, hence of E.

Show that a coherent state can also be obtained by applying the translation (finite-displacement)
operator e~ Pl/h (where p is the momentum operator, and [ is the displacement distance) to the

ground state.
Show that the wave function of the coherent state is
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Start by using a| A) = A| A) in the coordinate representation. Fix the normalization by demanding
that (X' | \) = e*™*. (Hint: The identity ee? = ePedelAB] which is true if [A, B] commutes with
A and B might be useful.) Show that ¢ (x,t) evolves with the time like classical coordinates given
that | A) — | Ae7®?),

6. Sakurai, p. 150, problem 35

Consider the Hamiltonian of a spinless particle of charge ¢q. In the presence of a static magnetic field, the

interaction terms can be generated by

qA
Poperator = Poperator — c )

where A is the appropriate vector potential. Suppose, for simplicity, that the magnetic field B is uniform

in the positive z-direction. Prove that the above prescription indeed leads to the correct expression for

the interaction of the orbital magnetic moment (¢/2mec)L with the magnetic field B. Show that there is

also an extra term proportional to B%(z? + y?), and comment briefly on it physical significance.



7. Lorentz force law
Show that if we modify the classical Lagrangian to include the interaction of a charged particle with a

magnetic field so that
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that Lagrange’s equations yield the Lorentz force law
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