
P6572 HW #4

Due September 23, 2011

1. SHO propagator

We know that given the eigenfunctions and the eigenvalues we can construct the propagator:

K(x, t;x′, t′) =
∑
n

ψn(x)ψ∗n(x′)e−iEn(t−t′)/~ (1)

Consider the reverse process (since the path integral approach gives K directly), for the case of the

harmonic oscillator where

K(x, t;x′, 0) =

√
mω

2πi~ sinωt
exp

{
imω

2~ sinωt
[(x2 + x′

2
) cosωt− 2xx′]

}
(a) Set x = x′ = t′ = 0. By expanding both sides of Equation 1 you should find that

E = ~ω/2, 5~ω/2, 9~ω/2, ...,etc. What happened to the levels in between?

(b) Now consider the extraction of the eigenfunctions. Let x = x′ and t′ = 0. Find

E0, E1, |ψ0(x)|2, and |ψ1(x)|2 by expanding in powers of a = exp(iωt).

2. Sakurai, p. 149, problem 30

The propagator in position space is (2.5.26), namely,

K(x′′, t,x′, t0) =
∑
a′

〈
x′′ | exp(

−iHt
~

) | a′
〉〈

a′ | exp(
iHt0
~

) | x′
〉

=
〈
x′′, t | x′, t0

〉
The analogous propagator in momentum space is given by 〈p′′, t | p′, t0〉. Derive an explicit expression for

〈p′′, t | p′, t0〉 for the free particle case.

3. Green’s function

Derive the Green’s function G(x, x′, E) for a free particle in one dimension, where(
−~2

2m

∂2

∂x2
− E

)
G(x, x′, E) = δ(x− x′)

4. Sakurai, p. 149, Problem 26

Consider a particle moving in one dimension under the influence of a potential V (x). Suppose its wave

function can be written as exp[iS(x, t)/~]. Prove that S(x, t) satisfies the classical Hamilton-Jacobi

equation to the extent that ~ can be regarded as small in some sense. Show how one may obtain the

correct wave function for a plane wave by starting with the solution of the classical Hamilton-Jacobi

equation with V (x) set equal to zero. Why do we get the exact wave function in this particular case?
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5. Coherent state

A coherent state of a one-dimensional simple harmonic oscillator is defined to be an eigenstate of the

(non-Hermitian) annihilation operator a:

a| λ〉 = λ| λ〉,

where λ is, in general, a complex number.

(a) Prove that

| λ〉 = e−|λ|
2/2eλa

† | 0〉

is a normalized coherent state.

(b) Prove the minimum uncertainty relation for such a state.

(c) Write | λ〉 as

| λ〉 =

∞∑
n=0

f(n)| n〉.

Show that the distribution of |f(n)|2 with respect to n is of the Poisson form. Find the most probable

value of n, hence of E.

(d) Show that a coherent state can also be obtained by applying the translation (finite-displacement)

operator e−ipl/~ (where p is the momentum operator, and l is the displacement distance) to the

ground state.

(e) Show that the wave function of the coherent state is

ψλ(x) = 〈x | λ〉 =
(mω
π~

)1/4
e−λ

2/2e−(mω/2~)x
2
e
√

(2mω/~)λx

Start by using a| λ〉 = λ| λ〉 in the coordinate representation. Fix the normalization by demanding

that 〈λ′ | λ〉 = eλ
∗λ. (Hint: The identity eAeB = eBeAe[A,B] which is true if [A,B] commutes with

A and B might be useful.) Show that ψλ(x, t) evolves with the time like classical coordinates given

that | λ〉 → | λe−iωt〉.

6. Sakurai, p. 150, problem 35

Consider the Hamiltonian of a spinless particle of charge q. In the presence of a static magnetic field, the

interaction terms can be generated by

poperator → poperator −
qA

c
,

where A is the appropriate vector potential. Suppose, for simplicity, that the magnetic field B is uniform

in the positive z-direction. Prove that the above prescription indeed leads to the correct expression for

the interaction of the orbital magnetic moment (q/2mc)L with the magnetic field B. Show that there is

also an extra term proportional to B2(x2 + y2), and comment briefly on it physical significance.
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7. Lorentz force law

Show that if we modify the classical Lagrangian to include the interaction of a charged particle with a

magnetic field so that

L→ L+
q

c
v ·A(x)

that Lagrange’s equations yield the Lorentz force law

m
d2x

dt2
=
q

c
v ×B
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