
Problem 1

The propagator

K(x, t;x′ t′) ≡ 〈x, t|x′, t′〉

can be rewritten in terms of the energy eigenstates ψn (with energy En) as follows:

K(x, t;x′, t′) =
∑

n

ψn(x) ψn(x′)⋆ e−iEn (t−t′)/~

Suppose we perform a path integral to obtain the SHO propagator:

K(x, t;x′, 0) =
mω

2πi~ sinωt

√

exp

[

imω

2~ sinωt

[(

x2 + (x′)2
)

cosωt− 2xx′]
]

where we set t′= 0 WLOG. Now we want to extract information about the eigenstates and their energies.

a)

We set x= x′= 0 to obtain:

∑

n

|ψn(0)|2 e−iEn t/~ =
mω

2πi~ sinωt

√

We perform Fourier analysis on the RHS to determine the eigenenergies. We need a prescription for going
around the branch cut singularity of u

√
located at u= 0. The correct prescription is to add a small nega-

tive imaginary piece to the time:

t → t− i ε/ω

where ε is a infinitesimal dimensionless regulator. Thus, sin ωt→ sin (ω t− iε) = cosh ε sin ωt− i sinh ε cos
ωt≃ sinωt− i ε cosωt, and we find:

∑

n

|ψn(0)|2 e−iEn t/~−εEn/(~ω) =
mω

2πi~ (sinωt− i ε cosω t)

√

To see that this is the correct prescription, check the case t=0:

∑

n

|ψn(0)|2 e−εEn/(~ω) =
mω

2π~ ε

√

The LHS is a convergent, regulator dependent sum, and is therefore a positive real number, as is the RHS.

Having regulated the propagator, we see that K(0, t; 0, 0) has a period 4π/ω, rather than the naive expec-

tation 2π/ω. This is because
1

ε cosωt + i sinωt
crosses the u

√
branch cut (conventionally along the negative

real axis) once each “period” 2π/ω (at times tbr = (π + 2πn)/ω), picking up an extra minus sign; thus,
K(0, t; 0, 0) satisfies K(0, t+2π/ω; 0, 0) =−K(0, t; 0, 0)1.
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We write K(0, t; 0, 0) as a Fourier series:

K(0, t; 0, 0) =
∑

n

cn e
−inωt/2

Thus,

cn =
ω

4π

∫

0

4π/ω

K(0, t; 0, 0) einωt/2 dt

The antiperiodicity of K(0, t; 0, 0) over the interval 2π/ω implies that the cn vanish for n even. In prin-
ciple, all we have to do to extract the other coefficients (for n odd) is to perform the above integral. How-
ever, this is somewhat difficult to do in practice.

Consider the following shortcut: instead of adding a small regulator term, suppose we add a large negative
imaginary part to t:

t → t− i α/ω

where α> 0. We find:

∑

n

|ψn(0)|2 e−iEn t/~−αEn/(~ω) =
mω

π~ ( eα+iωt − e−α−iωt)

√

Suppose we take the limit α → ∞. The RHS vanishes, whereas the LHS only vanishes if all the En are
positive. This must therefore be the case. Now take α to be large but finite, and expand the RHS in a
power series in e−α (we set t= 0 for simplicity; it’s easy to see that the eiωt’s always line up when the eα’s
do):

∑

n

|ψn(0)|2 e−αEn/(~ω) = e−α/2 mω

π~

√

(

1− e−2α
)−1/2

≃ e−α/2 mω

π~

√

[

1+
1

2
e−2α +

3

8
e−4α +	 ]

We read off the eigenenergies:

En = ~ω/2, 5~ω/2, 9~ω/2,	
and the coefficients:

|ψ0(0)|2 =
mω

π~

√

|ψ2(0)|2 =
1

2

mω

π~

√

|ψ4(0)|2 =
3

8

mω

π~

√�
1. This property is obvious when we obtain the propagator from the energy eigenstates, as the eigenenergies are E = (n + 1/
2) ~ω, where the + 1/2 contributes the crucial minus sign.

2



Looking at Sakurai eqn. 2.6.17, We see that these coefficients should take the general form:

|ψn(0)|2 =
1

2nn!
[Hn(0)]2

mω

π~

√

It’s easy to verify that the first few work out as expected.

The odd energy levels do not appear since their wavefunctions are odd functions of x, so that ψ1(0) =
ψ3(0)=	 = 0.

Why is this procedure valid? Suppose the regulated sum
∑

n
|ψn(0)|2 e−iEn t/~−εEn/(~ω) is convergent for

ε infinitesimal. Increasing ε can only make it more convergent. Thus, taking α→ ∞, we obtain the ana-
lytic continuation of the propagator to t= − iα/ω for α large. Since the RHS is analytic, we must obtain
the same result upon analytically continuing it to t=− iα/ω, allowing us to match coefficients in a regime
where the expansion in e−α is valid.

b)

We generalize the procedure of the previous section to the case x= x′� 0. The propagator becomes:

K(x, t;x, 0) =
mω

2πi~ sinωt

√

exp

[

− mωx2

~

(

cosωt− 1

i sinωt

)]

=
mω

π ~ (eiωt − e−iωt)

√

exp

[

− mωx2

~

(

eiωt + e−iωt − 2

eiωt− e−iωt

)]

=
mωe−iωt

π~ (1− e−2iωt)

√

exp

[

− mωx2

~

(

1− 2e−iωt + e−2iωt

1− e−2iωt

)]

We perform the same procedure as above, replacing t= − iα/ω and expanding in powers of a≡ e−α. The
term in parentheses inside the exponent becomes:	 =

1− 2a+ a2

1− a2

=
(1− a)2

(1− a) (1 + a)

=
1− a

1+ a

= 1− 2a

1 + a

Thus, defining γ2≡ m ω x2

~
, we find:

∑

n

|ψn(x)|2 a(En/~ω) = a1/2 (1− a2)−1/2 mω

π~

√

e−γ2

exp

[

2aγ2

1+ a

]

= a1/2 mω

π~

√

e−γ2

[

∑

n=0

∞
1

n!
an

[

∂n

∂an

(

1

1− a2
√ exp

[

2 a γ2

1 + a

])]

a=0

]

=
mω

π~

√

[

a1/2 +2γ2 a3/2 +
1

2
(2γ2− 1)2 a5/2 +	 ]e−γ2
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Thus, we find the spectrum En = (n + 1/2) ~ω, and the modulus squared of the corresponding wavefunc-
tions:

|ψ0(x)|2 =
mω

π~

√

exp

[

− mωx2

~

]

|ψ1(x)|2 = 2
mω

π~

√

[

mωx2

~

]

exp

[

− mωx2

~

]

|ψ2(x)|2 =
1

2

mω

π~

√

(

2mωx2

~
− 1

)

2

exp

[

− mωx2

~

]�
These are easily checked against Sakurai eqn. 2.6.17:

|ψn(x)|2 =
1

2nn!

mω

π~

√

[

Hn

(

mω

~

√

x

)]

2

exp

[

− mωx2

~

]

The next step

If we assume that the wavefunctions are real, then the above procedure is sufficient to recover them from
the propagator. Obviously, this is not always a good assumption. To circumvent it, we let x and x′ take
arbitrary values. Writing this out, we find:

K(x, t;x′, 0) =
mω

π~ (eiωt − e−iωt)

√

exp

[

− mω

~ (eiωt− e−iωt)

[

1

2

(

x2 + (x′)2
)(

eiωt + e−iωt
)

− 2xx′
]]

Replacing e−iωt with a, and definining γ2≡ mωx2

~
and γ ′2≡ mωx′2

~
as above, we obtain:

∑

n

ψn(x) ψn(x′)⋆ a(En/~ω) =
a1/2

1− a2
√ mω

π~

√

exp

[

− 1

1− a2

[

1

2

(

γ2 + (γ ′)2
)(

1 + a2
)

− 2 aγγ ′
]]

=
a1/2

1− a2
√ mω

π~

√

exp

[

− γ2 + γ ′2

2

]

exp

[

2aγγ ′− a2
(

γ2 + γ ′2)

1− a2

]

Expanding the RHS in a power series in a, we find:

∑

n

ψn(x) ψn(x′)⋆ a(En/~ω) =
mω

π~

√

[

a1/2 + 2γ γ ′ a3/2 +
1

2
(2γ2− 1)(2γ ′2− 1) +	 ]exp[ − γ2 + γ ′2

2

]

Factoring the answer, we read off the wavefunctions:

ψ0(x) =
(

mω

π~

)

1/4
exp

[

− 1

2
γ2

]

ψ1(x) = 2
√

γ
(

mω

π~

)

1/4
exp

[

− 1

2
γ2

]

ψ2(x) =
1

2
√ (2γ2− 1)

(

mω

π~

)

1/4
exp

[

− 1

2
γ2

]�
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where the overall phase is chosen arbitrarily.

Problem 2

We wish to find the momentum space propagator:

K(p, t; p′, t′) ≡ 〈p, t|p′, t′〉

where the state |p, t〉 satisfies:

p̂H(t) |p, t〉 = p |p, t〉

and therefore takes the form:

|p, t〉 = U †(t) |p〉

= exp

(

iHt

~

)

|p〉

where |p〉 ≡ |p, 0〉 is the Schrödinger picture momentum eigenstate. Thus, for a free particle, with Hamil-

tonian H =
|p̂ |2
2m

,

K(p, t; p′, t′) = 〈p|e−iH (t−t′)/~|p′〉

= e
−i

|p|2

2m
(t−t′)/~ 〈p|p′〉

= δ(d) (p− p′) exp

[

− i
|p|2 (t− t′)

2m~

]

where d is the number of dimensions in the problem (typically 1, 2, or 3).

Problem 3

We want to solve the differential equation

(

−~
2

2m

∂2

∂x2
−E

)

G(x, x′, E) = δ(x− x′)

where G(x, x′, E) =G(x−x′, E) is the one-dimensional Green’s function.

There are various tricks for obtaining Green’s functions. For instance, one can Fourier transform the
above equation to find an algebraic equation for G̃(p), which is easily solved. Contour integration can
then be used to obtain G(x).

However, in this case, a brute force approach is tractable. We set x′= 0 WLOG to obtain

(

− ~
2

2m

∂2

∂x2
−E

)

G(x,E) = δ(x)

We first write down the homogenous solutions (without the delta-function source), which take the form:

GH(x,E) = AeikE x +Be−ikE x
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where kE ≡ 2mE
√

/~. Since the source is localized at x=0, we must have

G(x,E) =

{

AeikE x +Be−ikE x x< 0
CeikE x +De−ikE x x> 0

for some coefficients A, B, C and D. To determine the relationship between A, B and C, D, we integrate
the defining differential equation from x=− ε to x= ε for small ε:

−
[

~
2

2m

∂

∂x
G(x,E)

]

−ε

ε

−E

∫

−ε

ε

G(x,E) dx = 1

The contribution from the second term on the LHS is infinitesimal, and can be dropped. We then find

[

∂

∂x
G(x,E)

]

x=ε

−
[

∂

∂x
G(x,E)

]

x=−ε

= − 2m

~2

or

(ikEC − ikED)− (ikEA− ikEB) = − 2m

~2

Continuity of G(x,E) at x= 0 further requires

A+B = C +D

The solution is

C −A = B −D = i
m

~2 kE

To fix the remaining ambiguities, we need to specify boundary conditions. For potential scattering prob-
lems (E > 0), we may want to exclude incoming waves. To do so, we must set A=D= 0. Thus,

G(x,E) = i
m

~2 kE
eikE |x|

This is also an appropriate choice for bound state problems (E < 0), where kE = iκE for κE ≡ − 2mE
√

/~,
so that

G(x,E) =
m

~2κE
e−κE |x|

and therefore G→ 0 as x→±∞.

In either case, for E→ 0 we find

G(x,E) = − m

~2 |x|

after discarding a divergent constant piece and terms which vanish as E→ 0. This is easily seen to satisfy
the defining equation, since

1

2

d2

dx2 |x| = δ(x)

which can be verified by integrating both sides.
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Other choices of Green’s function will differ by the homogenous solutions GH(x,E) discussed above.

Solution by contour integration

For completeness, we also present the contour integration method. To begin with, we Fourier transform.
Define

G̃(p,E) ≡ 1

2π~
√

∫

−∞

∞
dx e−ipx/~G(x,E)

We start with the defining differential equation

(

− ~
2

2m

∂2

∂x2
−E

)

G(x,E) = δ(x)

Multiplying by
1

2π~
√ e−ipx/~ and integrating over x, we eventually find

(

p2

2m
−E

)

G̃(p,E) =
1

2π~
√

after integrating by parts and dropping the boundary terms. This is the promised algebraic equation for
G̃. Thus, we obtain the formal solution

G(x,E) =
1

2π~
√

∫

−∞

∞
dp eipx/~ G̃(p,E) =

m

π~

∫

−∞

∞
dp

eipx/~

p2−~2 kE
2

where kE ≡ 2mE
√

/~, as before.

The RHS can be evaluated by contour integration: for x > 0, we close the contour in the upper half plane,
and for x < 0, we close it in the lower half plane. The integrand has poles at p = ± ~kE. For E > 0, the
poles lie on the real axis, and we must choose whether to go over or under them. To reproduce the
Green’s function for potential scattering discussed above, we go under the p = ~kE pole and over the p =
−~kE pole. Thus, for x> 0, the integration is counter-clockwise, and we pick up the p= ~kE pole giving

G(x> 0, E) = i
m

~2 kE
eikE x

For x< 0, the integration is clockwise, and we pick up the p=− 2mE
√

pole, giving

G(x< 0, E) = i
m

~2 kE
e−ikE x

Thus,

G(x,E) = i
m

~2 kE
eikE |x|

as we found previously. A different prescription for going around the poles will yield a different Green’s
function, corresponding to different boundary conditions.

For E < 0, the poles lie at p = ± i~κE, where κE ≡ − 2mE
√

/~. The most natural choice of contour is
along the real axis. Thus, for x> 0, we pick up the p= i~κE pole, giving

G(x> 0, E) =
m

~2 κE
e−κE x
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Similarly, for x< 0, we pick up the p=− i~κE pole, giving

G(x< 0, E) =
m

~2κE
eκE x

so that

G(x, E) =
m

~2 κE
e−κE |x|

as we found previously.

Problem 4

Consider the wavefunction:

ψ(x, t) = exp [iS(x, t)/~]

If we allow S to be complex, then this ansatz is general so long as ψ is nonvanishing. We apply
Schrödinger’s equation:

i~
∂ψ

∂t
= Hψ = − ~

2

2m

∂2ψ

∂x2
+V (x) ψ(x, t)

Thus,

− ∂S

∂t
eiS/~ = − ~2

2m

(

i

~

∂2S

∂x2
− 1

~2

(

∂S

∂x

)

2
)

eiS/~ +V (x) eiS/~

Cancelling an overall factor of eiS/~, we find:

i~

2m

∂2S

∂x2
= V (x)+

1

2m

(

∂S

∂x

)

2

+
∂S

∂t

Suppose that S has a characteristic lengthscale of spatial varations L and a characteristic magnitude S0.

Therefore
∂S

∂x
∼S0/L and

∂2 S

∂x2
∼S0/L

2. The
∂2 S

∂x2
term is much smaller than the

(

∂S

∂x

)

2
term so long as:

~S0

2mL2
≪ S0

2

2mL2

or S0≫ ~. Thus, in the large S/~ limit, we obtain:

0 = V (x)+
1

2m

(

∂S

∂x

)

2

+
∂S

∂t

and S may be taken to be real. We recognize this as the classical Hamilton-Jacobi equation for the Hamil-

tonian H =
p2

2m
+V (x), where p=

∂S

∂x
.

Now consider a free particle, with V = 0. Thus,

∂S

∂ t
= − 1

2m

(

∂S

∂x

)

2

We assume the ansatz:

S = W (x, α)− α2

2m
t
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for some constant α. Thus,

α2 =

(

∂W

∂x

)

2

or

W = αx+S0

where the arbitrary sign is absorbed into the definition of α. Thus,

S = αx− α2

2m
t+S0

and we find the wavefunction:

ψ(x, t) = exp

[

i

~
(p x−E t) + iφ0

]

where p = α is the momentum, E = p2/2m is the energy, and φ0 = S0/~ is an arbitrary phase. The solu-

tion is exact in this case, since
∂2 S

∂ x2
vanishes identically.

Problem 5

A coherent state of the 1D SHO is defined by

a |λ〉 = λ |λ〉

where a is the annihilation operator and λ∈C.2

a)

Consider the state

|λ〉 = e−|λ|2/2 eλa† |0〉

We compute

a |λ〉 = e−|λ|2/2 aeλa† |0〉 = e−|λ|2/2 [a, eλa†
] |0〉 = λe−|λ|2/2 eλa† |0〉 = λ |λ〉

where we use a |0〉 = 0 and [a, eλa†
] = λ

[

a, a†
]

eλa†
, as proven in problem 1 of PS #2. Thus, |λ〉 is indeed

a coherent state, with a eigenvalue λ. We now check that it is normalized. We have:

〈λ||λ〉 = e−|λ|2 〈0| eλ⋆ a eλa† |0〉

To simplify this expression, we first derive an identity. For operators A and B such that [A, [A, B]] = [B,

[A,B]] = 0, we already showed that eA eB = eA+B e
1

2
[A,B]

. Applying this identity twice, we find:

eA eB = eA+B e
1

2
[A,B]

=
(

eB eA e
− 1

2
[B,A]

)

e
1

2
[A,B]

= eB eA e[A,B]

2. Since a is not Hermitean, it can have complex eigenvalues.
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(This is the identity suggested in the prompt for part (e).) Applying this identity to eλ⋆ a eλa†
, we find

eλ⋆ a eλa†
= e|λ|2 eλa†

eλ⋆ a

Thus,

〈λ||λ〉 = 〈0| eλa†
eλ⋆ a |0〉 = 〈0||0〉 = 1

so the coherent state is indeed normalized.

b)

We have

x =
~

2mω

√

(

a+ a†
)

, p = − i
m~ω

2

√

(

a− a†
)

Thus, we readily compute (for the state λ):

〈x〉 =
~

2mω

√

(λ+λ⋆) , 〈p〉 = − i
m~ω

2

√

(λ−λ⋆)

To compute 〈x2〉 and 〈p2〉, we rewrite

x2 =
~

2mω

(

a+ a†
)

2 =
~

2mω

(

a2 + aa† + a† a+ a†2
)

=
~

2mω

(

1+ a2 + 2a† a+ a†2
)

and similarly

p2 = − m~ω

2

(

a− a†
)

2 =
m~ω

2

(

− a2 + aa†+ a† a− a†2
)

=
m~ω

2

(

1− a2 +2a† a− a†2
)

That is, we place these operators in normal order (all a’s on the right, all a†’s on the left) which makes
the computation of the expectation value easier. We now find:

〈x2〉 =
~

2mω

(

1+λ2 + 2 |λ|2 + (λ⋆)2
)

=
~

2mω

(

1 + (λ+λ⋆)2
)

〈p2〉 =
m~ω

2

(

1−λ2 + 2 |λ|2− (λ⋆)2
)

=
m~ω

2

(

1− (λ−λ⋆)2
)

Thus,

〈(∆x)2〉 = 〈x2〉− 〈x〉2 =
~

2mω

(

1+ (λ+λ⋆)2− (λ+λ⋆)2
)

=
~

2mω

〈(∆p)2〉 = 〈p2〉 − 〈p〉2 =
m~ω

2

(

1− (λ−λ⋆)2 + (λ−λ⋆)2
)

=
m~ω

2

and so

〈(∆x)2〉 〈(∆p)2〉 =
~2

4

which saturates the bound.
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c)

We want to express the coherent state in terms of the normalized energy eigenstates

|n〉 =

(

a†
)n

n!
√ |0〉

which is an eigenket of the number operator N = a† a with eigenvalue n. From the definition of |λ〉 we are
able to read off

|λ〉 = e−|λ|2/2
∑

n=0

∞
λn
(

a†
)n

n!
|0〉 =

∑

n=0

∞
f(n) |n〉

where

f(n) =
λn

n!
√ e−|λ|2/2

The probability of measuring an energy En = ~ω (n+ 1/2) is then

|f(n)|2 =
|λ|n
n!

e−|λ|2

which is the Poisson distribution with expectation value |λ|2, so that

〈E 〉 = ~ω
(

|λ|2 +1/2
)

However, the expectation value need not be the same as the most probable value (mode)! For instance,
the expectation value need not be an eigenvalue, whereas the mode always is. In this case, one can either
look up or check by hand that the most probable energy is3

E(mode) = ~ω
(⌊

|λ|2
⌋

+ 1/2
)

where ⌊x⌋ denotes the floor, i.e. the greatest integer less than or equal to x.

d)

We wish to compute e−ipℓ/~ |0〉 for ℓ real. As before, the best approach is to write the operator in normal
ordering, at which point all computations become trivial. We have

e−ipℓ/~ = exp

[

− ℓ
mω

2~

√

(

a− a†
)

]

= exp
[

λ
(

a†− a
)]

where

λ = ℓ
mω

2~

√

Applying eA+B = eA eB e
− 1

2
[A,B]

, we obtain

e−ipℓ/~ = eλa†
e−λa e−|λ|2/2

3. For |λ|2 an integer, both E = ~ω
(

|λ|2 + 1/2
)

and E = ~ω
(

|λ|2− 1/2
)

have equal probabilities.
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Thus

e−ipℓ/~ |0〉 = e−|λ|2/2 eλa†
e−λa |0〉 = e−|λ|2/2 eλa† |0〉 = |λ〉

as desired.

e)

There are several possible approaches to this problem. The simplest is to use the results of part (d),
together with the known ground-state wavefunction:

ψ0(x) =
(

mω

π~

)

1/4
exp

[

− 1

2

mωx2

~

]

But then

ψλ(x) = 〈x||λ〉 = 〈x|e−ipℓ/~|0〉 = 〈x− ℓ|0〉 = ψ0(x− ℓ)

where ℓ=λ
2~

mω

√

. Thus,

ψλ(x) =
(

mω

π~

)

1/4
exp

[

− 1

2

mω

~

(

x−λ
2~

mω

√

)

2
]

=
(

mω

π~

)

1/4
e−λ2

exp

[

− 1

2

mωx2

~
+

2mω

~

√

λx

]

However, this procedure is only valid for real λ, since we implicitly assumed that ℓ was real.

To establish the analogous result for complex λ, we follow the procedure suggested in the prompt. The
defining equation a |λ〉 = λ |λ〉 becomes a differential equation when written in terms of the wavefunction.
We have

a =
mωx+ ip

2m~ω
√

Thus,

mωxψλ(x)+ ~
∂

∂x
ψλ(x) = 2m~ω

√
λψλ(x)

or

(

x− 2
√

x0λ
)

ψλ(x)+ x0
2 ∂

∂x
ψλ(x) = 0

where x0≡ ~/mω
√

. The solution is

ψλ(x) = N exp

[

− 1

2x0
2

(

x− 2
√

x0λ
)

2
]

for λ∈C. We compute the normalization:

∫

−∞

∞
|ψλ(x)|2 dx = |N |2

∫

−∞

∞
exp

[

− 1

x0
2

(

x− 2
√

x0Reλ
)

2
+2 (Imλ)2

]

dx = |N |2x0 π
√

e2 (Imλ)2
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Thus,

N =
1

x0
1/2

π1/4
e−(Imλ)2+iφ

where φ is an unknown phase factor, so that

ψλ(x) =
1

x0
1/2

π1/4
e−(Imλ)2+iφ exp

[

− 1

2x0
2

(

x− 2
√

x0λ
)

2
]

=
1

x0
1/2

π1/4
e−(Imλ)2−λ2+iφ exp

[

− x2

2x0
2 + 2

√
λ
x

x0

]

=
1

x0
1/2

π1/4
e−λ2/2 e−|λ|2/2 ei φ̃ exp

[

− x2

2x0
2
+ 2
√

λ
x

x0

]

where we absorb an extra phase into φ on the last line. Note that

〈λ′ |λ〉 = e−|λ′|2/2−|λ|2/2 〈0| eλ′⋆ a eλa† |0〉 = e−|λ′|2/2−|λ|2/2 eλ′⋆ λ 〈0| eλa†
eλ′⋆ a |0〉 = e−|λ′|2/2−|λ|2/2 eλ′⋆ λ

where we apply eA eB = eB eA e[A,B] as in part (a). Thus, we find

∫

−∞

∞
ψλ′

⋆ (x) ψλ(x) dx =
1

x0 π
√ e−λ2/2−λ′⋆2

/2 e−|λ′|2/2−|λ|2/2 ei (φ̃λ− φ̃λ′)

×
∫

−∞

∞
exp

[

− x2

x0
2

+ 2
√
(

λ′⋆ +λ
) x

x0

]

= [	 ]×
∫

−∞

∞
exp

[

−
(

x

x0
− 1

2
√

(

λ′⋆ +λ
)

)

2

+
1

2

(

λ′⋆ +λ
)

2

]

= e−λ2/2−λ′⋆2
/2 e−|λ′|2/2−|λ|2/2 ei (φ̃λ− φ̃λ′) e

(

λ′⋆+λ
)

2/2

= e−|λ′|2/2−|λ|2/2 ei (φ̃λ− φ̃λ′) eλ′⋆λ

Thus, we must have φ̃λ = φ̃λ′, so we may fix φ̃λ = 0 (since it is independent of λ). In net, we find

ψλ(x) =
1

x0
1/2

π1/4
e−λ2/2 e−|λ|2/2 exp

[

− x2

2x0
2 + 2

√
λ
x

x0

]

which matches that given in the problem assignment after accounting for the different normalization con-
ventions.

Now we want to examine how the coherent state evolves with time. Since

|λ〉 =
∑

n=0

∞
λn

n!
√ e−|λ|2/2 |n〉

we see that

e−iHt/~ |λ〉 =
∑

n=0

∞
λn

n!
√ e−iωnt e−|λ|2/2 |n〉 =

∑

n=0

∞ (

e−iωtλ
)n

n!
√ e−|λ|2/2 |n〉 =

∣

∣λe−iωt
〉

Thus,

ψλ(x, t) = ψλ(t)(x)
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where λ(t)=λe−iωt.

We rewrite the time-dependent wavefunction as

ψλ(x, t) =
1

x0
1/2

π1/4
exp

[

− 1

2x0
2

(

x− 2
√

x0Reλ(t)
)

2
+ 2
√

i (Im λ(t))
x

x0

]

In this form, it is clear that ψλ(x, t) is a wave packet of fixed width, which oscillates back and forth with

central position xcen(t) = 2
√

x0 Re λ(t). The x-dependent phase (the second term in the exponential) rep-

resents a time varying momentum pcen(t) = 2
√

~

x0

Im λ(t). In particular, taking λ(t) = λ0 e
−iω(t−t0) with

λ0 real, we find

xcen =
2~

mω

√

λ0 cos [ω (t− t0)]

pcen = − 2m~ω
√

λ0 sin [ω (t− t0)]

so the position and momentum of the wave packet oscillate 90◦ out of phase with p = m ẋ, as one would
expect of a classical particle.

Problem 6

The Hamiltonian for a charged particle in the absence of electric or magnetic fields is:

H =
|p|2
2m

+V (x)

where V (x) is some unspecified potential.

Suppose we incorporate a vector potential via the prescription p→ p− e

c
A. Thus,

H =
1

2m

(

|p|2− e

c
(p ·A + A · p)+

e2

c2
|A|2

)

Since in general A = A(x), A does not commute with p. Suppose that the magnetic field B is constant.
One can check that the vector potential

A =
1

2
B ×x

obeys ∇×A =B. Thus, the Hamiltonian becomes:

H =
1

2m

(

|p|2− e

2c
(p · (B ×x)+ (B ×x) · p) +

e2

4c2
|B ×x|2

)

+V (x)

=
|p|2
2m

− e

4mc
[B · (x× p− p×x)] +

e2

8mc2
[

|B |2 |x|2− (B ·x)2
]

+V (x)

=
|p|2
2m

− e

2mc
(B ·L)+

e2

8mc2
[

|B |2 |x|2− (B ·x)2
]

+V (x)

where in the last line we use x× p =− p×x, since

εijk (xj pk + pjxk) = εijk [xj , pk]

= 0
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The second term in the Hamiltonian is simply − µ ·B, where

µ =
e

2mc
L

is the magnetic moment induced by the orbital angular momentum.

Now consider the third term, and write B =B ẑ WLOG. We find:	 =
e2B2

8mc2
[

x2 + y2
]

At first, the appearance of this term may seem slightly suprising, as we began with a setup which was
(potentially) invariant under translations x → x + ∆x (assuming that V (x) is a constant), whereas this
term is manifestly not invariant under translations (it looks like a 2D simple harmonic oscillator poten-
tial).

However, upon writing A in the form

A =
1

2
B ×x

we have made a gauge choice which is not invariant under general translations x → x + ∆x, but only
under z translations (and rotations in the x-y plane). The canonical momentum pcan = pphys +

e

c
A is not

gauge invariant, hence the appearance of other terms in the Hamiltonian which are not gauge invariant.
However, in cases where V (x) breaks x and y translation symmetry itself, this gauge choice is rather nat-
ural.

Problem 7

Start with the Lagrangian for a free particle:

L =
1

2
m |ẋ |2

We add an interaction term (for a particle of charge + e):

L =
1

2
m |ẋ |2 +

e

c
ẋ ·A(x)

The Euler-Lagrange equations give:

d

dt

∂L

∂ ẋi
=

∂L

∂xi

Thus,

d

dt

[

mẋi +
e

c
Ai(x(t))

]

=
e

c
ẋj ∂iAj

= mẍi +
e

c
ẋj ∂jAi

and so

mẍi =
e

c
ẋj (∂iAj − ∂jAi) =

e

c
ẋj εijk εklm ∂lAm =

e

c
εijk ẋjBk
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or

m
d2 x

dt2
=

e

c
ẋ ×B

which is the Lorentz force law for magnetostatics.

Starting with this Lagrangian, one can obtain the Hamiltonian of the previous problem by the standard
procedure. The canonical momentum is:

pcan =
∂L

∂ ẋ
= m ẋ +

e

c
A = pphys+

e

c
A

as we saw before. Thus,

H = p · ẋ −L =
(

m ẋ − e

c
A
)

· ẋ − 1

2
m |ẋ |2 +

e

c
ẋ ·A(x)

=
1

2
m |ẋ |2 =

1

2m
|pphys|2 =

1

2m
|p− e

c
A|2

In the above solution, we assumed that A, and hence B, was independent of time. If we allow B to be

time-dependent, then E will be nonvanishing in general, with E = − ∂A

∂t
− ∇φ. The

∂A

∂t
term which we

omitted above will contribute the addition eE term to the Lorentz force law, as expected (we should also
include − eφ(x) in the Lagrangian in this case.)
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