
P6572 HW #5

Due September 30, 2011

1. Show that if

H =
Π2

2m
+ eφ

with

Π = p− e

c
A

that if
∂ρ

∂t
+∇ · j = 0

with probability density ρ = |ψ|2 that the probability flux

j =
~
m

Im(ψ∗∇ψ)− e

mc
A|ψ|2

and that
dΠ

dt
=

e

2c

(
dx

dt
×B)− (B× dx

dt
)

)
− e∇φ

(Π,p,A, and x are operators.)

2. Sakurai, p. 150, problem 37

Consider the neutron interferometer as shown on p. 150. Prove that the difference in the magnetic fields

that produce two successive maxima in the counting rates is given by

∆B =
8π2~c
|e|gnλl

,

were gn(= −1.91) is the neutron magnetic moment in units of e− ~/2mnc.

3. SHO Partition function

The propagator

K(x′, t, x, 0) =
〈
x′ | e−

i
~Ht | x

〉

If we insert the identity in the form of the complete set of energy eigenstates we get

K(x′, t, x, 0) =
∑
j

〈
x′ | e−

i
~Ht | j

〉
〈j | x〉

=
∑
j

〈
x′ | e−

i
~Ejt | j

〉
〈j | x〉

=
∑
j

e−
i
~Ejt

〈
x′ | j

〉
〈j | x〉
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Set x = x′ and integrate over all xˆ ∞
−∞

K(x, t, x, 0)dx =
∑
j

ˆ ∞
−∞

e−
i
~Ejt〈j | x〉〈x | j〉dx

=
∑
j

e−
i
~Ejt

and then make the substitution t→ −iβ~ˆ ∞
−∞

K(x, t, x, 0) =
∑
j

e−βEj

We recognize the result as the partition function, where β = 1/kBT .

The propagator for the harmonic oscillator is

K(x′, t;x, 0) =
( mω

2πi sinωt

) 1
2

exp
{
i
mω

2 sinωt

(
(x′

2
+ x2) cosωt− 2xx′

)}
(1)

To determine the partition function from the propagator we follow the prescription outlined about. Put

x′ = x and t = −i~β and integrate over all x.

Z =

ˆ ∞
−∞

K(x,−iβ~, x, 0)dx

(a) Make the appropriate substitutions into Equation 1 and integrate to compute the partition function

for the harmonic oscillator

Z =
e−β~ω/2

1− e−β~ω
=

∞∑
j=0

e−β(j+
1
2
)~ω

(b) Show that the thermal average of the system’s energy is

Ē =
∑
i

E(i)P (i) = − ∂

∂β
lnZ

where P (i) = e−βEi/Z. and that

Ē = ~ω
(

1

2
+

1

eβ~ω − 1

)
.

(c) Consider a crystal with N0 atoms which for small oscillations is equivalent to 3N0 decoupled oscilla-

tors. Assume that all oscillators have the same frequency. The mean thermal energy of the crystal

Ēcrystal is Ē summed over all the normal modes. Show that

C =
1

N0

∂Ēcrystal
∂T

= 3k

(
θE
T

)2 eθE/T

(eθE/T − 1)2

where θE = ~ω/k is the Einstein temperature and varies from crystal to crystal. Show that for

T � θE

Cqu(T )→ 3k
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and for T � θE

Cqu → 3k

(
θE
T

)2

e−θE/T

Although Cqu(T ) → 0 as T → 0, the exponential falloff disagrees with the observed C(T ) → T 3

behavior. This discrepancy arises from assuming that the frequencies of all normal modes are equal,

which is of course not generally true. This discrepancy was removed by Debye.

4. Sakurai, p. 148, problem 25

Consider an electron confined to the interior of a hollow cylindrical shell whose axis coincides with the

z−axis. The wave function is required to vanish on the inner and outer walls, ρ = ρa and ρb, and also at

the top and the bottom, z = 0 and L.

(a) Find the energy eigenfunctions. (Do not bother with normalization.) Show that the energy eigen-

values are given by

Elmn =

(
~2

2me

)[
k2mn +

(
lπ

L

)2
]

(l = 1, 2, 3, ...,m = 0, 1, 2, ...),

where kmn is the nth root of the transcendaental equation

Jm(kmnρb)Nm(kmnρa)−Nm(kmnρb)Jm(kmnρa) = 0.

(b) Repeat the same problem when there is a uniform magnetic field B = Bẑ for 0 < ρ < ρa. Note that

the energy eigenvalues are influenced by the magnetic field even though the electron never ”touches”

the magnetic field.

(c) Compare, in particular, the ground state of the B = 0 problem with that of the B 6= 0 problem.

Show that if we require the ground-state energy to be unchanged in the presence of B, we obtain

”flux quantization”

πρ2aB =
2πN~c
e

, (N = 0,±1,±2, ...).

5. Charged particle in a magnetic field

Consider a particle of charge e in a vector potential

A =
B

2
(−yi + xj)

(a) Show that a classical particle in this potential will move in circles at an angular frequency ω0 =

eB/mc.

(b) Consider the Hamiltonian for the corresponding quantum problem

H =
1

2m

(
Π2
x + Π2

y + Π2
z

)
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where

Πx = px − e
Ax
c
, Πy = py − e

Ay
c
, Πz = pz.

Show that Q = c
eBΠx, P = Πy are canonical. Show that allowed energy levels are E = (n+ 1

2)~ω0 +
~2k2
2m where ~k is the contnuous eigenvalue of the pz operator. (Hint: Write H in terms of P and Q.)

(c) Expand H out in terms of the original variables and show as in Sakurai 35 from last week that

H = H(
ω0

2
,m)− ω0

2
Lz

where H(ω0/2,m) is the Hamiltonian for an isotropic two-dimensional harmonic oscillator. Argue

that the same basis that diagonalized H(ω0/2,m) will diagonalize H. By thinking in terms of this

basis, show that the allowed levels for H are E = (k + 1
2 |m| −

1
2m + 1

2)~ω0, where k is any integer

and m is the angular momentum, where we are neglecting the motion in the z-direction. Convince

yourself that you get the same levels from this formula as from the earlier one [E = (n+ 1/2)~ω0].
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