
P6572 HW #6

Due October 7, 2011

1. Sakurai, p. 242, Problem 2

Consider the 2X2 matrix defined by

U =
a0 + iσ · a
a0 − iσ · a

,

where a0 is a real number and a is a three-dimensional vector with real components.

(a) Prove that U is unitary and unimodular.

(b) In general, a 2X2 matrix represents a rotation in three dimensions. Find the axis

and angle of rotation appropriate for U in terms of a0, a1, a2, and a3.

2. Generators

(a) Show that in any representation where Jx and Jz are real matrices (therefore

symmetrical), Jy is a pure imaginary matrix (therefore antisymmetrical).

(b) Show that if any operator commutes with two components of an angular momen-

tum vector, it commutes with the third.

(c) Let u,v,w be three unit vectors forming a right-handed Cartesian system. Show

that the infinitesimal rotation

R̂ ≡ R−1
v (ε)R−1

u (ε)Rv(ε)Ru(ε)

differs from Rw(−ε2) only by terms of higher order than ε2.

3. Sakurai, p. 242, Problem 3

The spin dependent Hamiltonian of an electron-positron system in the presence of a

uniform magnetic field in the z-direction can be written as

H = AS(e−) · S(e+) +

(
eB

mc

)
(S(e−)

z − S(e+)
z ).

Suppose the spin function of the system is given by χ
(e−)
+ χ

(e+)
− .

(a) Is this an eigenfunction of H in the limit A→ 0, eB/mc 6= 0? If it is, what is the

energy eigenvalue? If it is not, what is the expectation value of H?

(b) Same problem when eB/mc→ 0, A 6= 0.
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4. Sakurai, p. 242, Problem 5

Let the Hamiltonian of a rigid body be

H =
1

2

(
K2

1

I1

+
K2

2

I2

+
K2

3

I3

)
where K is the angular momentum in the body frame. From this expression obtain the

Heisenberg equation of miotion for K and then find Euler’s equation of motion in the

correspondence limit.

5. Sakurai, p. 243, problem 8

Consider a sequence of Euler rotations represented by

D(1/2)(α, β, γ) = exp

(
−iσ3α

2

)
exp

(
−iσ2β

2

)
exp

(
−iσ3γ

2

)

=

 e−i(α+γ)/2 cos β
2
−e−i(α−γ)/2 sin β

2

ei(α−γ)/2 sin β
2

ei(α+γ)/2 cos β
2


Because of the group properties of rotations, we expect that this sequence of operations

is equivalent to a single rotation abut some axis by an angle θ. Find θ.

6. Unstable States

We can write the time evolution of a state as | ψ(t)〉 = exp(−iEt/~)| ψ(0)〉. If we

start in that state | ψ(0)〉, the probability of remaining in the state remains constant:

P = |〈ψ(t) | ψ(t)〉|2 = |〈ψ(0) | ψ(0)〉|2. If we make the substitution E → E − i~γ
2

, then

the probability of remaining in the state is no longer constant: P = |〈ψ(t) | ψ(t)〉|2 =

exp(−γt). A ”complex energy” means that the hamiltonian is no longer hermitian.

Now consider a state | φ2〉 which is stable and a state | φ1〉 that decays with lifetime

τ1 = 1/γ1. The Hamiltonian is:

H0 =

(
E ′1 0

0 E ′2

)
=

(
E1 − i~γ12

0

0 E2

)
If we now turn on a coupling between states | φ1〉 and | φ2〉,

H = H0 +W =

(
E1 − i~γ12

W12

W21 E2

)
where W12 = W ∗

21.
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(a) Solve for the new eigen energies and show that in the limit of weak coupling

|W12| �
√

(E1 − E2)2 + ~2γ2
4

, the new eigenenergies are:

ε′1 = E1 − i
~γ1

2
+

|W12|2

E1 − E2 − i~γ1/2

ε′2 = E2 +
|W12|2

E2 − E1 + i~γ1/2

The energies of the eigenstates in the presence of the coupling are the real parts

of ε′1 and ε′2; the lifetimes are inversely proportional to their imaginary parts. In

particular, we see that ε′1 and ε′2 are both complex when |W12| is not zero. In the

presence of the coupling there is no longer any stable state.

(b) Re-write ε′2 as ε′2 = ∆2 − i~Γ2

2
and calculate expressions for ∆2 and Γ2.

(c) Let E1 = E2 for simplicity. Solve for the probability of finding the system in the

state | φ1〉 when |W12 >
~γ1
4

and the system is initially in the state | φ2〉.

(d) Still under the condition E1 = E2, solve for the probability of finding the system

in the state | φ1〉 when |W12| < ~γ1
4

and the system is initially in the state | φ2〉.

(e) Offer a physical interpretation of the results you have just derived.

7. Antiparticles and antigravity

We now want to consider a practical application of the previous problem.

The K0 meson and its antiparticle K̄0 can be produced in a reaction π− + p → K0 +

K̄0 +other stuff. However, the decay modes of the K0 meson are given in terms of linear

superposition of states:

KL =
1√
2

(
| K0〉+ | K̄0〉

)
KS =

1√
2

(
| K0〉 − | K̄0〉

)

KS decays into 2 pions in approximately 10−10 seconds, while KL decays (into 3 pions)

with a life time 600 times longer. (Actually KL has been seen to decay into 2 pions

with a rate 10−3 of the 3π decay rate due to CP violation.)

People have suggested that antiparticles fall up and want to make anti-hydrogen to test

this hypothesis. We will analyze this conjecture with regard to the K0 − K̄0 system.

Assume the KL is in the gravitational potential of the earth V = −GMm/R, where M

is the mass of the earth and R is the radius of the earth.
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(a) If the gravitational mass of K̄0 has the opposite sign of the K0, derive an expression

for how long it would take for KL to decay into 2 π’s via an oscillation into KS.

Given the known decay rate into 2 π’s , what is the upper limit for the gravitational

mass difference of K0 and K̄0?

(b) Give a numerical answer to part (a). It will help to know that the mass of the K

meson is approximately 500MeV/c2.
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