P6572 HW \#6
Due October 7, 2011

1. Sakurai, p. 242, Problem 2

Consider the 2X2 matrix defined by

$$
U=\frac{a_{0}+i \sigma \cdot \mathbf{a}}{a_{0}-i \sigma \cdot \mathbf{a}}
$$

where a_{0} is a real number and \mathbf{a} is a three-dimensional vector with real components.
(a) Prove that U is unitary and unimodular.
(b) In general, a 2X2 matrix represents a rotation in three dimensions. Find the axis and angle of rotation appropriate for U in terms of a_{0}, a_{1}, a_{2}, and a_{3}.

2. Generators

(a) Show that in any representation where J_{x} and J_{z} are real matrices (therefore symmetrical), J_{y} is a pure imaginary matrix (therefore antisymmetrical).
(b) Show that if any operator commutes with two components of an angular momentum vector, it commutes with the third.
(c) Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be three unit vectors forming a right-handed Cartesian system. Show that the infinitesimal rotation

$$
\hat{R} \equiv R_{v}^{-1}(\epsilon) R_{u}^{-1}(\epsilon) R_{v}(\epsilon) R_{u}(\epsilon)
$$

differs from $R_{w}\left(-\epsilon^{2}\right)$ only by terms of higher order than ϵ^{2}.

3. Sakurai, p. 242, Problem 3

The spin dependent Hamiltonian of an electron-positron system in the presence of a uniform magnetic field in the z-direction can be written as

$$
H=A \mathbf{S}^{\left(\mathrm{e}^{-}\right)} \cdot \mathbf{S}^{\left(\mathrm{e}^{+}\right)}+\left(\frac{e B}{m c}\right)\left(S_{z}^{\left(e^{-}\right)}-S_{z}^{\left(e^{+}\right)}\right)
$$

Suppose the spin function of the system is given by $\chi_{+}^{\left(e^{-}\right)} \chi_{-}^{\left(e^{+}\right)}$.
(a) Is this an eigenfunction of H in the limit $A \rightarrow 0, e B / m c \neq 0$? If it is, what is the energy eigenvalue? If it is not, what is the expectation value of H ?
(b) Same problem when $e B / m c \rightarrow 0, A \neq 0$.

4. Sakurai, p. 242, Problem 5

Let the Hamiltonian of a rigid body be

$$
H=\frac{1}{2}\left(\frac{K_{1}^{2}}{I_{1}}+\frac{K_{2}^{2}}{I_{2}}+\frac{K_{3}^{2}}{I_{3}}\right)
$$

where \mathbf{K} is the angular momentum in the body frame. From this expression obtain the Heisenberg equation of miotion for \mathbf{K} and then find Euler's equation of motion in the correspondence limit.

5. Sakurai, p. 243, problem 8

Consider a sequence of Euler rotations represented by

$$
\begin{aligned}
\mathcal{D}^{(1 / 2)}(\alpha, \beta, \gamma) & =\exp \left(\frac{-i \sigma_{3} \alpha}{2}\right) \exp \left(\frac{-i \sigma_{2} \beta}{2}\right) \exp \left(\frac{-i \sigma_{3} \gamma}{2}\right) \\
& =\left(\begin{array}{cc}
e^{-i(\alpha+\gamma) / 2} \cos \frac{\beta}{2} & -e^{-i(\alpha-\gamma) / 2} \sin \frac{\beta}{2} \\
e^{i(\alpha-\gamma) / 2} \sin \frac{\beta}{2} & e^{i(\alpha+\gamma) / 2} \cos \frac{\beta}{2}
\end{array}\right)
\end{aligned}
$$

Because of the group properties of rotations, we expect that this sequence of operations is equivalent to a single rotation abut some axis by an angle θ. Find θ.

6. Unstable States

We can write the time evolution of a state as $|\psi(t)\rangle=\exp (-i E t / \hbar)|\psi(0)\rangle$. If we start in that state $|\psi(0)\rangle$, the probability of remaining in the state remains constant: $P=|\langle\psi(t) \mid \psi(t)\rangle|^{2}=|\langle\psi(0) \mid \psi(0)\rangle|^{2}$. If we make the substitution $E \rightarrow E-i \frac{\hbar \gamma}{2}$, then the probability of remaining in the state is no longer constant: $P=|\langle\psi(t) \mid \psi(t)\rangle|^{2}=$ $\exp (-\gamma t)$. A "complex energy" means that the hamiltonian is no longer hermitian.

Now consider a state $\left|\phi_{2}\right\rangle$ which is stable and a state $\left|\phi_{1}\right\rangle$ that decays with lifetime $\tau_{1}=1 / \gamma_{1}$. The Hamiltonian is:

$$
H_{0}=\left(\begin{array}{cc}
E_{1}^{\prime} & 0 \\
0 & E_{2}^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
E_{1}-i \frac{\hbar \gamma_{1}}{2} & 0 \\
0 & E_{2}
\end{array}\right)
$$

If we now turn on a coupling between states $\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$,

$$
H=H_{0}+W=\left(\begin{array}{cc}
E_{1}-i \frac{\hbar \gamma_{1}}{2} & W_{12} \\
W_{21} & E_{2}
\end{array}\right)
$$

where $W_{12}=W_{21}^{*}$.
(a) Solve for the new eigen energies and show that in the limit of weak coupling $\left|W_{12}\right| \ll \sqrt{\left(E_{1}-E_{2}\right)^{2}+\frac{\hbar^{2} \gamma^{2}}{4}}$, the new eigenenergies are:

$$
\begin{aligned}
\epsilon_{1}^{\prime} & =E_{1}-i \frac{\hbar \gamma_{1}}{2}+\frac{\left|W_{12}\right|^{2}}{E_{1}-E_{2}-i \hbar \gamma_{1} / 2} \\
\epsilon_{2}^{\prime} & =E_{2}+\frac{\left|W_{12}\right|^{2}}{E_{2}-E_{1}+i \hbar \gamma_{1} / 2}
\end{aligned}
$$

The energies of the eigenstates in the presence of the coupling are the real parts of ϵ_{1}^{\prime} and ϵ_{2}^{\prime}; the lifetimes are inversely proportional to their imaginary parts. In particular, we see that ϵ_{1}^{\prime} and ϵ_{2}^{\prime} are both complex when $\left|W_{12}\right|$ is not zero. In the presence of the coupling there is no longer any stable state.
(b) Re-write ϵ_{2}^{\prime} as $\epsilon_{2}^{\prime}=\Delta_{2}-i \frac{\hbar \Gamma_{2}}{2}$ and calculate expressions for Δ_{2} and Γ_{2}.
(c) Let $E_{1}=E_{2}$ for simplicity. Solve for the probability of finding the system in the state $\left|\phi_{1}\right\rangle$ when $\left\lvert\, W_{12}>\frac{\hbar \gamma_{1}}{4}\right.$ and the system is initially in the state $\left|\phi_{2}\right\rangle$.
(d) Still under the condition $E_{1}=E_{2}$, solve for the probability of finding the system in the state $\left|\phi_{1}\right\rangle$ when $\left|W_{12}\right|<\frac{\hbar \gamma_{1}}{4}$ and the system is initially in the state $\left|\phi_{2}\right\rangle$.
(e) Offer a physical interpretation of the results you have just derived.

7. Antiparticles and antigravity

We now want to consider a practical application of the previous problem.
The K_{0} meson and its antiparticle \bar{K}_{0} can be produced in a reaction $\pi^{-}+p \rightarrow K_{0}+$ $\bar{K}_{0}+$ other stuff. However, the decay modes of the K_{0} meson are given in terms of linear superposition of states:

$$
\begin{aligned}
K_{L} & =\frac{1}{\sqrt{2}}\left(\left|K_{0}\right\rangle+\left|\bar{K}_{0}\right\rangle\right) \\
K_{S} & =\frac{1}{\sqrt{2}}\left(\left|K_{0}\right\rangle-\left|\bar{K}_{0}\right\rangle\right)
\end{aligned}
$$

K_{S} decays into 2 pions in approximately 10^{-10} seconds, while K_{L} decays (into 3 pions) with a life time 600 times longer. (Actually K_{L} has been seen to decay into 2 pions with a rate 10^{-3} of the 3π decay rate due to CP violation.)
People have suggested that antiparticles fall up and want to make anti-hydrogen to test this hypothesis. We will analyze this conjecture with regard to the $K_{0}-\bar{K}_{0}$ system. Assume the K_{L} is in the gravitational potential of the earth $V=-G M m / R$, where M is the mass of the earth and R is the radius of the earth.
(a) If the gravitational mass of \bar{K}_{0} has the opposite sign of the K_{0}, derive an expression for how long it would take for K_{L} to decay into 2π 's via an oscillation into K_{S}. Given the known decay rate into 2π 's, what is the upper limit for the gravitational mass difference of K_{0} and \bar{K}_{0} ?
(b) Give a numerical answer to part (a). It will help to know that the mass of the K meson is approximately $500 \mathrm{MeV} / \mathrm{c}^{2}$.

