1. A simultaneous eigenstate of J^{2} and J_{z} is denoted $|j, m\rangle$.
(a) Show that the expectation values of the operators J_{x} and J_{y} for this state are zero.
(b) Show that if any operator commutes with 2 components of an angular momentum operator, it must commute with the third component.
2. We would like to study the evolution of a state that starts out as $\binom{1}{0}$ and is subject to the \mathbf{B} field

$$
\mathbf{B}=B \cos \omega t \hat{\mathbf{i}}-B \sin \omega t \hat{\mathbf{j}}+B_{0} \hat{\mathbf{k}} \quad\left(B \ll B_{0}\right)
$$

This state obeys

$$
\begin{equation*}
i \hbar \frac{d}{d t}|\psi(t)\rangle=H|\psi\rangle \tag{1}
\end{equation*}
$$

where $H=-\gamma \mathbf{S} \cdot \mathbf{B}$ and \mathbf{B} is time dependent. Since classical reasoning suggests that in a frame rotating at frequency $(-\omega \hat{\mathbf{k}})$ the Hamiltonian should be time independent and governed by

$$
\mathbf{B}_{r}=B \hat{\mathbf{i}}_{\mathbf{r}}+\left(B_{0}-\omega / \gamma\right) \hat{\mathbf{k}}
$$

consider the ket in the rotating frame, $\left|\psi_{r}(t)\right\rangle$, related to $|\psi(t)\rangle$ by a rotation angle ωt :

$$
\begin{equation*}
\left|\psi_{r}(t)\right\rangle=e^{-i \omega t S_{z} / \hbar}|\psi(t)\rangle . \tag{2}
\end{equation*}
$$

(\mathbf{B}_{r} is the effective field in the rotating frame. $\hat{\mathbf{i}}_{\mathbf{r}}$ is the unit vector in the x-direction in the rotating frame.)

Combine Equations 1 and 2 to derive Schrodinger's equation for $\left|\psi_{r}(t)\right\rangle$ in the S_{z} basis and verify that the classical expectation is borne out. Solve for $\left|\psi_{r}(t)\right\rangle=U_{r}(t)\left|\psi_{r}(0)\right\rangle$ by computing $U_{r}(t)$, the propagator in the rotating frame. Rotate back to the lab and show that in the S_{z} basis

$$
|\psi(t)\rangle \rightarrow\left[\begin{array}{c}
{\left[\cos \left(\frac{\omega_{r} t}{2}\right)+i \frac{\omega_{0}-\omega}{\omega_{r}} \sin \left(\frac{\omega_{r} t}{2}\right)\right] e^{i \omega t / 2}} \\
\frac{i \gamma B}{\omega_{r}} \sin \left(\frac{\omega_{r} t}{2}\right) e^{-i \omega t / 2}
\end{array}\right]
$$

Compare this to the state $|\hat{\mathbf{n}},+\rangle$ and see what is happening to the spin for the case $\omega_{0}=\omega$. Show that $\left\langle\mu_{z}(t)\right\rangle$ is given by

$$
=\left\langle\mu_{z}(0)\right\rangle\left[\frac{\left(\omega_{0}-\omega\right)^{2}}{\left(\omega_{0}-\omega\right)^{2}+\gamma^{2} B^{2}}+\frac{\gamma^{2} B^{2} \cos \omega_{r} t}{\left(\omega_{0}-\omega\right)^{2}+\gamma^{2} B^{2}}\right]
$$

3. Sakurai, p. 244, problem 15

The wave function of a particle subjected to a spherically symmetrical potential $V(r)$ is given by

$$
\psi(\mathbf{x})=(x+y+3 z)) f(r)
$$

(a) Is ψ an eigenfunction of \mathbf{L}^{2} ? If so, what is the l-value? If not, what are the possible values of l we may obtain when \mathbf{L}^{2} is measured?
(b) What are the probabilities for the particle to be found in various m_{l} states?
(c) Suppose it is known somehow that $\psi(\mathbf{x})$ is an energy eigenfunction with eigenvalue E. Indicate how we may find $V(r)$.
4. Sakurai, p. 245, problem

Consider an orbital angular-momentum eigenstate $|l=2, m=0\rangle$. Suppose this state is rotated by an angle β about the y-axis. Find the probability for the new state to be found in $m=0, \pm 1$, and ± 2 (The spherical harmonics for $l=0,1$, and 2 given in Appendix A may be useful.)

5. Sakurai, p. 245, problem 22

(a) Consider a system with $j=1$. Explicity write

$$
\left\langle j=1, m^{\prime}\right| J_{y}|j=1, m\rangle
$$

in 3X3 matrix form.
(b) Show that for $j=1$ only, it is legitimate to replace $e^{-i J_{y} \beta / \hbar}$ by

$$
1-\left(\frac{J_{y}}{\hbar}\right) \sin \beta-\left(\frac{J_{y}}{\hbar}\right)^{2}(1-\cos \beta)
$$

(c) Using (b), prove

$$
d^{(j=1)}(\beta)=\left(\begin{array}{ccc}
\frac{1}{2}(1+\cos \beta) & -\frac{1}{\sqrt{2}} \sin \beta & \frac{1}{2}(1-\cos \beta) \\
\frac{1}{\sqrt{2}} \sin \beta & \cos \beta & -\frac{1}{\sqrt{2}} \sin \beta \\
\frac{1}{2}(1-\cos \beta) & \frac{1}{\sqrt{2}} \sin \beta & \frac{1}{2}(1+\cos \beta)
\end{array}\right)
$$

6. Neutrino oscillations

Let $\left|\nu_{1}\right\rangle$ and $\left|\nu_{2}\right\rangle$ be the neutrino mass eigenstates. They are in general different from the weak interaction electron $\left|\nu_{e}\right\rangle$, and muon $\left|\nu_{\mu}\right\rangle$ neutrino eigenstates. Electron
neutrinos ν_{e} are produced by weak interactions in the sun. The mass eigenstates and the weak eigenstates are related according to

$$
\begin{aligned}
\left|\nu_{e}\right\rangle & =\cos \theta\left|\nu_{1}\right\rangle+\sin \theta\left|\nu_{2}\right\rangle \\
\left|\nu_{\mu}\right\rangle & =-\sin \theta\left|\nu_{1}\right\rangle+\cos \theta\left|\nu_{2}\right\rangle
\end{aligned}
$$

A nonzero mass difference between ν_{1} and ν_{2} would result in neutrino oscillations that would be manifested as the disappearance of solar electron neutrinos at an earth based observatory. Suppose that a ν_{e} neutrino is created at $t=0$ as a momentum eigenstate. What is the probability for finding the system in state $\left|\nu_{\mu}\right\rangle$ at a later time? (This is the same formalism as problems 6\& 7 from last week's assignment except there is no decay term.)

