Physics 6572 PS #8 Solutions

Problem Set 8 — Solutions

Problem 1

The decays in question will be given by some Hadronic matric element:
Lo |(i[V]f)I?

where |i) is the initial state, V is an interaction term, and |f) is the final state. The strong interaction
preserves isospin, so V' must be an isospin singlet. We apply the Wigner-Eckart theorem to compute the
required ratios:
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where (i||V||f) is an isospin singlet which cancels upon taking ratios of two matrix elements which differ
by an isospin rotation. Thus, we can compute ratios of certain rates by taking ratios of Clebsch-Gordan
coefficients.

Consider the first ratio:
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We have:

1

V2

Thus, (1,0/(|]1,0) ®|1,0)) =0 and the numerator vanishes, so

[1,0) = (|1,1>®|1,—1>—|1,—1>®|1,1>)
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Now consider the second ratio
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Finally, the third ratio is:
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In reality, isopin symmetry is broken by a number of effects, including electromagnetic interactions (e.g.
the proton and the neutron have different charges), the weak interaction, and the light-quark masses.
However, for decays mediated by the strong force, isospin is a good symmetry, and should be approxi-
mately conserved. For other decays, isospin is not conserved. For instance, isospin conservation would
suggest that all the pions are stable with equal masses, since they form an isospin triplet and all lighter
particles are isospin singlets (apart from bare quarks). However, the 7& are in fact ~5 MeV heavier than
the 7Y, and all pions are unstable. The 7° has a lifetime of ~ 10716 s and decays electromagnetically,
whereas the 7% have equal lifetimes of ~10~8s and decay via the weak interaction.
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Problem 2

The matrix elements ng?m(R) are defined by (j, m/|D(R)|j, m) where D(R) is the operator associated
with the spatial rotation R. Now consider the direct product state |ji jo; m1 ma) = |j1, m1) ® |Jja2, ma).
D(R) rotates each factor equally:

D(R) |j1 jzsmima) = [D(R) |j1,m1)] @ [D(R) |j2,m2)]
Therefore,

(j1 j2; m1ma| D(R) |41 josmimb) = (j1,ma|D(R) |1, mL) (2, mo| D(R) |jo, mb) = DI (R)D? . (R)

my1mi momb
and so
Dy = (J,m[D(R)|j,m)
= (J1J2; jm|D(R)|j1j2; jm’)

= D> (Guda Gmldige; mama) (uja; mama| D(R)| 1z mi mb) (jrja; mi malju ja; jm)

4 4
mi,m2 Mims

= Y gz imliizmima) DI (R) D2 (R) (rga; mi malia ja; jm)

’ ’
mi1,m2 M3 my

Since ds,z)m/(H) = Df,zzn/ (R(0)), where R(0) is a rotation about the y-axis by an angle 6, we have

d9.0) = S 3T (e gmlgijzmyma) it (0) d22, L (0) (jijesmimaljr jas jm)

4 !
mi1,m2 Mmims

We are free to choose any ji, jo which satisfy j; + jo=j. Thus, to find the spin-3/2 matrices, we take j; =
1 and jo=1/2. We find:

3/2 . 3 3 1 1 1 1/2 1 1 3 3
d372,3/200) = <5,§'1,§,1,§ ah1(0) A3 1000) (L Lg| s

1/2 1 0
= di(0) d1;271/2(9) = 5(1+cos9)cos§

and
3/2 /33 1
d3a,1/2(0) = <§75 3
33,11\ , 12 11]31
+<§7§'17§717§>d1,0(9) d1/271/2(9)<17§707§’575>
= JE a6 a2 0 2 100 dV2 (0
= \/3 1,100) dyja 1 /2(0) + 3 1,0(0) dy)3,1/2(6)

11 .0 1. 0
_\/;§(1+c059)51n5—\/251n9c055

= —+/3 sing cos? 9

2

1.1\ 4 1/2 1 1]3
1753 175 > dl,l(o) d1/27—1/2(9) <1a§7 15 _5'57
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and
a0 - (Bt oo
o Dot
+ <%,% 1,%; ,% > dp,1(0) d}g,—l/z(e) <1’%; 1, _%'%’%>
T <%,% 1,%; O,% > do,0(6) diﬁ,l/z(@) <1’%; 0’%'%’ %>

V2

1/2

1/2
= gd%,l(G) L1y, —12(0) + 5= (d%,o(e) d—/1/2,1/2(9) +dg(0) d

2
+ 3 d8,0(6) i3 1/2(6)

= lcos3Q—zsinGSinQ—kzcochosg
T3 2 3 2 3 2
1,02 30
= gcos §—|—§c057

The other components of d3/ 2 /(0) can be worked out in a similar fashion.

Problem 3

We can represent Vq1 as a column vector:

. _ VatiVy
Vi V2
Vql = Vo = Vz
Vi, V, —iV,
V2
Thus, V1 Z d (B )Vqll is given by the matrix equation:
1+cosp _L . 1—cosf3 V., v
— 75 Sin J6] —2 / + VatiVy
~1 o _
Vg = 7 Sin 1) cos 3 sm 16} ( 1\/
1—cosp 1 1+cosﬁ —tVy
5 75 Sin 1)

(Vm cos B+ Vesin 8) +iVy

iVy Vz cos (3 V. sin 3 \

V2 V2 V2 V2

= —Vysin B+ V, cos 8 = V,cos B —V,sin 3
. iVy V. cos 3 W sin 3 (Vg cos B+ V. sin B) — iV,
V2 V2 V2 V2

Therefore, Vz =V, cos B+ V,sin 8 and ‘72 =V, cos B — V, sin <nonesep> (3

(Vz\ cosf 0 sing Vz
Vy = 0 1 0 Vy
k Nz) —sinf@ 0 cosf V.
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1?2,—1/2(9) )
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This is clearly a rotation about the y axis by an angle (3; one can even check that the signs are correct
using the right-hand rule.

Problem 4

This problem is a straightforward application of (3.11.26) in Sakurai.

a)

Given vectors U = (U,,U,,U,) and V = (V,, V,,, V), we construct the usual cross product:
W = UxV = (U V,~U.V,, U.Vs—U, Vs, Uy Vy — Uy, Vi)

We construct a spherical tensor out of W by the standard procedure, as in the previous problem:

Wilzq:%,wozwz

We then have:

/_UszfUszJri(UzVIfUsz) \
21
UxV)q _ W, UsVy=UyVs

iv2  iv2 iv2
V2 V2 UyVe—U.Vy—i (Us Ve — Uz V2)
21

1 _
T,” =

( %[Vz (U +iUy) = U, (Vy+iV,)] \

UV, = U, V)

3 Ve (Us = ily) = U (V, =i V)]
where the overall normalization is merely conventional.

c)

From Saurai (3.11.26), we find:

1 _ . 1 :
T® = Up Vi = 3 U £iU,) (Vo £iV,) = 5(UIVI—UyVy)j:%(Usz+Usz)
and
1 _ . 1 j
T8 = % = F5VUetil) +U. (Va£iV,)] = F5 VU +UVa] =5 [VoUy +U.V))
and

U1 Vo +200Vo+U-1 Vi
V6
QUL Vs — (Un+ iU (Ve —iV,) )2 — (Us — iU, (Vi +i V) /2
V6

TP =

2U. V. — U, Ve — U,V
V6

We recognize various components of the symmetric/traceless piece of T;; =U; V.
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Problem 5

a)

We define the spherical tensor:
Xi, =

Thus, the matrix elements we are asked to related are those of Xi1,0~ We apply the Wigner-Eckart the-
orem, (3.11.31), to obtain:

<n’,l',m’|X;|n,l,m> = (I,1;m, q|l';m"y Mx(n,n’1,l")
where Mx(n,n’,1,1') is the rotationally invariant piece of the matrix element, independent of m,m’ and

q. The above expression relates the matrix elements of X ; for different ¢q. We see that the matrix element
vanishes unless:

m'=m+q , [[-1<U<|l+1]
since the Clebsch-Gordon coefficient vanishes unless these conditions are satisfied by conservation of

angular momentum. In certain other special cases the Clebsch-Gordan coefficient will vanish even when
these conditions are obeyed, e.g. for [=1"=1 and m=m'=¢=0.

b)

Instead of applying the Wigner-Eckart theorem, we rewrite the matrix element in the position basis by
standard methods:

(n/,lI',m'|Xgn,l,m) = /d3x<n’,l’,m’|X;|w><w|n,l,m>

q

/ A3z (n" I, m/|x)(x|n,l,m) X}(z)

= / d3.’IJ \Ijn/,l’,m/(w)* \I]n,l,m(w) X;({I;)
The wavefunction ¥,, ; () should take the form
Vo m(x) = Y™(0, ¢) Rni(r)

for some unknown radial wavefunction R, (r). Moreover,

(—L\/gy\ (—%Tsin@ew\
X(x) = - 0 = A v
) = z = 7 CcOs = 5" 10, ¢)

—i 1. .
= —rsinfei?

V2 V2

Thus, since d3z =r2drdQQ, we find

<n’,l’,m’|X;|n,l,m> = [U%/Rn/l/(r)*Rnl(r) r3d1"]>< /dQYl’/”/(t?,gb)*Ylm(H,gb) Y40, ¢)
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We now apply (3.8.73) from Sakurai, namely
[ ARV 0.6 Vi 0.0 Y0, 0) = Ninia (b mafts i Um)
where N, i, 1, is a rotationally invariant numerical factor which we do not write. Thus,
(01| X, 1m) = [ TNt [ Rurr0)* Ro) d] < (1, Lsm, gt m')
and we recover our result from part (a), where

Mx(n,n/,1,1) = %M’;Z,I/Rn/l’(r)*Rnl(r) rodr

and the exact form of Nj.; 1 is given by Sakurai (3.8.73).

Problem 6
a)
This is a simple application of problem 4, with U =V =a. We find:
(2) 2 1 N2 1, 5 2 ;
QY; = X1, = g(x:tzy) = 5(:10 —yH) tizy

ng% = V2X41 Xy = Fzlztiy) = Frz—iyz

@2  2XoXo+2X41 X1 222 (z+iy)(w—iy) \/T 9.2 42 2
= = = = (22— 2_
0 V6 V6 6( Y )

Therefore,
2’ —y? = Q2+ Q-2
1
xy = Z[QH_Q_Q]
1
xz = —§[Q+1—Q—1]
— —1@n+Q
Yyz = E[ +1 71]
222222 = 6Qo
b)
We have:

e<a,j,m=j|(322—7°2)|04,j,m=j> = \/66<a,j,m:j|Qo|a,j,m:j>
\/6€<ja27]70|jaj> MQ(CY,j,Oé,j)

O
|
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and

€<a,j,m/|x2—y2|a,j,m:j> = e<a,j,ml|Q+2+Q_2|a,j,m=j>
= ela,j,m|Q-z2]a, j,m=j)
= e(j,2:§,—2[j,m) Mq(a, j,a,j)

<j72;j7_2|j7ml>
V6 (3,2;5,005, )

where the Q4o term vanishes, since m’ = j + 2 is impossible. We readily see that the matrix element is
only nonvanishing for m’=j — 2, in which case:

<j72;j7_2|j7j_2>

e<a,j7m’:j—2|x2—y2|a,j,m=j> = . ; .
V6 (5,2;3,0]5,4)

Problem 7

We find
! j 2 : FJy B —5JuB
S m|d B = >0 Gomler i | m) Gmle T )
m=—j m=—j
- Iy —5Ju8
= > > Gomllen ™ ml|" m) (5", mle” 0§, m)
i7" m=—j"
1

= G mer LT )
where d?, () is defined as

& (B) = (j,mle 778 5,m)

and we use the fact that (j, m'le” #
tion of J,:

Jyﬁ|j”, m) vanishes for j # j”, together with the spectral decomposi-

J, = Z th|]7m><]vm|

j=0,11,.. m=—j

©|

To interpret the resulting expression, recall that J is the generator of rotations, in that
Un,0) = e 70

represents a rotation by an angle § about the axis 7, with direction of rotation determined by the right-
hand rule, e.g.

U, B)|lxoy = |w6> , &= (zocos B+ zosin B) £ + yo § + (z0cos B — zosin ) 2
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Applying the operator x to both sides, we see that U can also be interpreted as rotating the operator x:
' = UG, B)TxUY,B) , x'=(vcosB+zsinf)i+yy+ (zcosf—xsinf) 2

(These two viewpoints are similar to the “active” and “passive” interpretations of rotations, respectively,
and are analogous to the Schrodinger and Heisenberg pictures for time translation.)

This result generalizes to other vector operators. Thus,
UGB L UGB = er e P = Jocos f— J,sin

Alternately, we could have established this identity by brute force, e.g. by applying the Cambell-Baker-
Hausdorff equation.

Thus,

J

Zm

m=—j

dfﬁm/(ﬁ)r = %(j,mﬂ (Jycos B — Jzsin B)|j,m’y = m/cosf

since (j, m|J;|j, m’) is only nonvanishing for m’=m £ 1.

For the special case j=1/2, we have

g2 cosg —sing
e sin?  cos?
2 2
Thus,
1/2 2 1 6.1 8 1
Zl lm’dn{,l/2(ﬁ)’ = —551n2§+§c052§ = §cosﬁ
m=—33
T L S B T
m="373
as expected.
b)
We have
j . 2 i i
> m?di,(8) = (Gom/le” 5 Pm?| jm) (j,mler P )

similar to before. Note that
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and
e_%JyBJze%Jyﬁ = J,cos B+ Jysin 3
similar to what we found in part (a). Thus,
7%%[3(]36%%’& = JZcos? B+ (JuJ.+J.J.)cos Bsin B+ J2sin? 3

We then find

= m/ COS ﬂ—F—Sln 6<]7m/|Jm2|]am/>

since (j,m'|J;|j,m’) =0 as before. To evaluate the last term, we write J, in terms of ladder operators:

Jo = =(Ji+J)

| —

Thus

)

. . 1, .
(Gom/|J2lg,m’) = (G m/| Ty T+ T Telg,m)

since (j,m’|J%|j,m) = (j,m'|J2|j,m’) =0. However,

Jpd_+J_Jy = (Jotidy)(Jo—idy)+ (Jo—idy)(Jot+idy) = 2(J3+T;) = 2(J2—J2)

Thus,
1. ) 1r.,.
sz G2 ) = 5[ G+ —m?]
and so
J - s02 2 2
; +1)s + 3 cos -1
Z m2’dgn/m(ﬁ)’2 = m’2coszﬁ+%sin2ﬁ{j(jﬁ-l)—m’z} = J+1)sin” ;n ( cos” B )
m=—j
which is the desired result.
Problem 8
We have
/m(a’ﬁa,}/) = <j,m/|€_%Jzae_%Jy66_%Jz’Y|j,m> _ €_i(m/a+mw/hd£nm/(ﬁ)
where

& n(B) = (Gym)e 77 5, m)

Thus, since

An 4w
/ da / d’y —i(m’a+m~)/h — 6777,/ 05777, 0
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we obtain
47 47 T 1
da d~ sin 3df . ; _ d(cos ) ,;
/) A7 /) A /) 2 D m m(aa ﬁ?’}/) - 6m 7067n,0 . 2 dm’m(ﬁ)

However,
dbo(B) = Pj(cos B)

where P;(z) is the jth Legendre polynomial (j cannot be half-integral, since m =m’'=0.) Thus,

47 47 T 1
da dvy sin fdg ; _ dz
/0 47 /0 47 /0 2 Dlmml@, B,7) = Omri00m.0 -1 2 Pj(x) Po(z)

where we insert Py(z) =1. However, the Legendre polynomials obey the orthogonality condition:

1
dz 1
/_1 TPJ‘(I)PJ"(I’) = misjj’

Thus,

47 47 -
da dvy sindg ; _ ‘
,/0 Ar 0 A ,/0 2 D m’m(auﬁaﬁy) - 5m’,06m7063,0

as desired.
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