1. Deuteron

The deuteron (d) is an atomic nucleus with spin $J=1$ that is composed of a proton (p) and a neutron (n) bound together. (Both the p and the n have spin $1 / 2$). The p and n couple with the orbital angular momentum l to make the total angular momentum (spin) j of the deuteron.
(a) What are the possible spin and orbital angular momenta of the proton and neutron in the deuteron? Use the standard spectroscopic notation, ${ }^{2 S+1} L_{J}$.
(b) Using tables of Clebsch-Gordon coefficients, write each of these deuteron spin states in terms of the appropriate orbital states $\left|L, M_{L}\right\rangle$ and appropriate singlet and triplet states, $\left|S, M_{s}\right\rangle$; rather than any explicit $Y_{l}^{m}(\theta, \phi)$ or Pauli spinors.

2. Spherical Tensor Operators

(a) Prove the tensor operator composition laws

$$
U_{q_{1}}^{k_{1}} V_{q_{2}}^{k_{2}}=\sum_{q, k}\left\langle k_{1} q_{1} k_{2} q_{2} \mid k q\right\rangle T_{q}^{k}
$$

and

$$
T_{q}^{k}=\sum_{q_{1}, q_{2}}\left\langle k q \mid k_{1} q_{1} k_{2} q_{2}\right\rangle U_{q_{1}}^{k_{1}} V_{q_{2}}^{k_{2}}
$$

(b) Show that $T_{q}^{k}|0\rangle$, where $|0\rangle$ is any $j=0$ state, transforms under rotations like the angular momentum eigenstate $|k q\rangle$.
3. Sakurai, p. 282, problem 5

Because of weak (neutral-current) interactions there is a parity-violating potential between the atomic electron and the nucleus as follows:

$$
V=\lambda\left[\delta^{(3)}(\mathbf{x}) \mathbf{S} \cdot \mathbf{p}+\mathbf{S} \cdot \mathbf{p} \delta^{(3)}(\mathbf{x})\right]
$$

where \mathbf{S} and \mathbf{p} are the spin and momentum operators of the electron, and the nucleus is assumed to be situated at the origin. As a result, the ground state of an alkali atom, usually characterized by $|n, l, j, m\rangle$ actually contains very tiny contributions from other eigenstates as follows:

$$
|n, l, j, m\rangle \rightarrow|n, l, j, m\rangle+\sum_{n^{\prime}, l^{\prime}, j^{\prime}, m^{\prime}} C_{n^{\prime}, l^{\prime}, j^{\prime}, m^{\prime}}\left|n^{\prime}, l^{\prime}, j^{\prime}, m^{\prime}\right\rangle .
$$

On the basis of symmetry considerations alone, what can you say about $\left(n^{\prime}, l^{\prime}, j^{\prime}, m^{\prime}\right)$, which give rise to nonvanishing contributions? Suppose the radial wave functions and the energy levels are all known. Indicate how you may calculate $C_{n^{\prime}, l^{\prime}, j^{\prime}, m^{\prime}}$. Do we get further restrictions on $\left(n^{\prime}, l^{\prime}, j^{\prime}, m^{\prime}\right)$?

4. Angular momentum addition

We add two equal angular momenta $j_{1}=j_{2}=j$. Without using the symmetry properties of the Clebsch Gordan coefficients show that in any permutation of m_{1} and m_{2} the eigenfunctions of the total angular momentum are either symmetrical (invariant) or antisymmetrical (multiplied by -1), and that this symmetry property depends only on J (the total angular momentum). Show that they are symmetrical or antisymmetrical according as $(-1)^{2 j+J}$ is equal to +1 or -1 .

5. Electric dipole moment

A charged particle with spin operator \mathbf{S} is assumed to possess an electric dipole moment operator $\mu \mathbf{S}$, where μ is a numerical constant, so that the hamiltonian for this particle in any electric field \mathbf{E} contains the interaction term $-\mu \mathbf{S} \cdot \mathbf{E}$. Show that neither space inversion or time reversal is a symmetry operation for this particle moving in a spherically symmetric electrostatic potential $\phi(r)$, even when no external electric field is present.
6. Sakurai, problem 7, p. 283
(a) Let $\psi(\mathbf{x}, t)$ be the wave function of a spinless particle corresponding to a plane wave in three dimensions. Show that $\psi^{*}(\mathbf{x},-t)$ is the wave function for the plane wave with the momentum direction reversed.
(b) Let $\chi(\hat{\mathbf{n}})$ be the two-component eigenspinor of $\sigma \cdot \hat{\mathbf{n}}$ with eigenvalue +1 . Using the explicit form of $\chi(\hat{\mathbf{n}})$ (in terms of the polar and azimuthal angles β and γ that characterize $\hat{\mathbf{n}})$ verify that $-i \sigma_{2} \chi^{*}(\hat{\mathbf{n}})$ is the two-component eigenspinor with the spin direction reversed.

7. Sakurai, p. 283, problem 10

(a) What is the time-reversed state correspoonding to $\mathcal{D}(R)|j, m\rangle$?
(b) Using the properties of time reversal and rotations, prove

$$
\mathcal{D}_{m^{\prime} m}^{(j)}{ }^{*}(R)=(-1)^{m-m^{\prime}} \mathcal{D}_{-m^{\prime},-m}^{(j)}(R) .
$$

(c) Prove $\Theta|j, m\rangle=i^{2 m}|j,-m\rangle$.

