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Lecture I

1.1 Density Matrix

Sometimes we have a pure system. That is, identically prepared particles or system of particle all
in the same quantum state. We can make measurements on the system to learn about the state. If
for example we have a system of spin 1/2 particles all in the state | α〉, then

| α〉 = a| +〉+ b| −〉.

We can determine a and b by measuring spin along various axis. Eventually we will find the
polarization and our work is complete. Alternatively, we might have a mixture of states with
fraction wi in state αi. The wi sum to 1 and the | αi〉 may or may not be orthogonal. Suppose we
want the ensemble of spin 1/2 particles that is unpolarized. Our linear combination is clearly not
a candidate. It’s spin is along some definite direction. Note that |a|2 + |b|2 = 1. We want the state
that looks more like

w+| +〉+ w−| −〉

where w− + w+ = 1 and both real so there is no relative phase information. If w+ = w− then
we get equal probablity for measuring | +〉 and | −〉 regardless of the orientation of our SG device.
It could be a mixture of states that are not orhtogonal, like spin in x and y directions. Density
operator formalism handy for dealing wth mixed and pure ensembles.

Suppose | αi〉 are normalized and in our mixture there is probability wi to be in the pure state
| αi〉. The average value of some observable

[A] =
∑
i

wi 〈αi | A | αi〉

In terms of a complete set of eigenstates | ai〉 with eigenvalues ai we write

| αi〉 =
∑
j

〈aj | αi〉| aj〉

so that
[A] =

∑
j

∑
i

wi|〈aj | αi〉|2aj

Or in terms of a complete set that is not an eigenbasis of A

[A] =
∑
j

∑
k

∑
i

wi〈αi | bj〉 〈bj | A | bk〉 〈bk | αi〉

=
∑
j

∑
k

[∑
i

wi〈bk | αi〉〈αi | bj〉

]
〈bj | A | bk〉

=
∑
k

〈bk |ρA| bk〉 = Tr (ρA)
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Or
ρ =

∑
i

wi| αi〉〈αi |

We see that ρ is Hermitian and

Tr(ρ) =
∑
j

∑
i

wi〈bj | αi〉〈αi | bj〉 = 1

In a pure ensemble, wi = 1 for some i and wj , j 6= i = 0. There is a single state. The density
matrix

ρ = | αn〉〈αn |

a projection operator and therefore ρ2 = ρ and Trρ2 = 1. The diagonalized density operator for a
pure state has a single non-zero value on the diagonal.

1.1.1 Construction of the Density Matrix

Again, the spin 1/2 system. The density matrix for a pure z = + 1
2 state

ρ = | +〉〈+ | =
(

1
0

)
( 1 0 ) =

(
1 0
0 0

)
Note that Trρ = 1 and Trρ2 = 1 as this is a pure state. Also the expectation value of σz, Trρσz = 1
The density matrix for the pure state Sx = ±1 is

ρ = | Sx〉〈Sx | =
1√
2

[| +〉 ± | −〉] 1√
2

[〈+ | ± 〈− |]

=
1

2

(
1
±1

)
( 1 ±1 ) =

1

2

(
1 ±1
±1 1

)
Again Trρ = 1,

ρ2 =
1

4

(
2 ±2
∓2 2

)
and Trρ2 = 1. A completely unpolarized state, with maximum disorder

1

2
[| +〉〈+ |+ | −〉〈− |] =

(
1
2 0
0 1

2

)
now Trρ = 1 but Trp2 = 1

2 and Tr(σρ) = 0.

1.1.2 How many measurements

For a given ensemble, how many measurements are required to fully describe the system, which
of course is fuly described by the density matrix. Consider again spin 1/2. If the system is in a
pure state | Sx〉〈Sx | and we measure the z-component of spin, we get probability 1/2 of measuring
| ±〉. In a completely unpolarized state we measure the same. Clearly we need more observables to
describe the state. In this case we need to measure Sx, Sy and Sz to learn all there is to know. The
most general density matrix is Hermitian with spin 1. In an n dimensional space there are n2 real
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parameters less one since Trρ = 1. For spin 1/2 that leaves 3 real parameters. The most general
density matrix can be constructed from σ as

ρ =
1

2
(1 + a·σ)

where a is a real vector. And we see as noted above that we need to measure 3 observables, namely
the polarization, to determine the state of the ensemble. The polarization is

〈σi〉 = Tr(ρσ) = Tr

(
1

2
a · σσi

)
= ai

1.1.3 Spin 1

The density matrix for a spin 1 system has 8 independent parameters.

ρ =
1

3
(1 + P · J +WijTij)

where

Tij =
1

2
(JiJj + JjJi)−

2

3
δij

is symmetric with zero trace.
Note that the product operator is in general∑

cijJiJj =
1

2

∑
cij [(JiJj − JjJi) + (JiJj + JjJi)]

=
1

2

∑
cij [[Ji, Jj ] + (JiJj + JjJi)] =

1

2

∑
cij [iεijkJk + (JiJj + JjJi)]

The antisymmetric part is already included in the term linear in J . Of the symmetric piece, the
i = j component is the identity and already included. That leaves Tij . As for higher orders, J3 → J
so there is no new information there.

What then characterizes the ensemble beyond polarization? Suppose the system is in the pure
state

| α〉 = (i| 1〉 − | −1〉)
The density matrix

ρ = | α〉〈α | = (i| 1〉 − | −1〉) (−i〈1 | − 〈−1 |)

=
1

2

 1 0 i
0 0 0
−i 0 1


It is an eignestate of the operator (

1

2
(J1J2 + J2J1)

)
It is a pure state as Trρ = 1 and ρ2 = ρ. The expectation value of the spin

〈J〉 = Tr(ρJ) = 0

There is zero polarization. But it is pure. Another observable, namely the quadrupole moment as
represented by JiJj identifies the ensemble.
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1.1.4 Time Dependence

The density matrix

ρ(t0) =
∑

wi| αi〉〈αi |

As long as there are no external forces on the system, the wi are constant. and

i~
∂

∂t
ρ =

∑
i

wi[H| α〉〈α | − | α〉〈α |H] = [H, ρ]
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