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1.2 Partial Wave Analysis

We have described scattering in terms of an incoming plane wave, a momentum eigenket, and and
outgoing spherical wave, also with definite momentum. We now consider the basis of free particle
states with definite energy and angular momentum (rather than linear momentum) that look like
| E,1,m). These are eigenkets of of Hy, L?, and L,. We would like to expand our plane wave in
terms of these spherical waves like so

= | B 1m)(E,1,m]|X) (1.1)
lm

Then we can write the scattering amplitude

1 2m
fK' k) = —4*§83<k/|T|k>

_ 1 2m / / / /
= — e /dEZ/dEZk|El N(EU,m! | T | El,m)(E,l,m|Kk)

U,m’

If the scattering potential is spherically symmetric, T is a scalar operator, and by WE, [ =1',m =
m', and (E,l,m | T | E,l,m) is independent of m. Then

12
FK. k) = Ehifs 3//dEdE’ S| ELLm) (B Lm | T | E,Lm) (E,l,m | k)
12
- ZH—?S //dEdE’ S | ELLm)THE, Lm | K) (1.2)
/I8
(1.3)

The ”spherical” scattering amplitude conserves angular momentum.
Now let’s figure out (k | E,l, m). Consider the state | kz).

(kz | L, | E,lim) = 0 (m#0)
S (k2| B,Lm) = 0 (m#£0)

Also (k2 | E,l,m = 0) is independent of 0, ¢,s0 (k,2 | E,l,m = 0) = /2L g,(k). We can transform

the z-direction momentum ket into an arbitrary direction by a rotation.
k) = Dl = 6,8 = 6,0)| k2) (1.4)
Then

(k| E,l,m)

(k2 |D| E,l,m)

= Y (kz|E,l',m' =0)(E,l''m' =0|D|E,lm)
ll
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21 +1
= ;\/ 1 9(K) Do
20+ 1 dr
= IZ/\/ T 9N 5 Y (0,9)

S ik (0. 9)
l

One more thing.

(k|Hy—FE|Elym) = <k|E‘,l,m>(h2 —F)=
m
K2 k2
K2 k2
= aqk) = les(% - E)

To determine NV, let’s try to normalize.

(E')l',m" | E,1,m)

/d3k<E/,l’,m’ | k)(k | E,1,m)

th//2 ) hzk//Q

_ 12 3701 * m'*ym _
= /k dK"dQNSN Y™ Y 6( 5 EN( S E)
27112 2112
- /k”Qdk”|Nl|2§(h b fE')a(h i —E)
2m 2m
E'm K2 k//2 K2 k”2
= E"|N|? -F -E
[ B NP~ BN~ B)
k'm
= = |N1|20(E — E' )61/ 0
h W2k
From which we get
h h2k?
k|E,lm,)=—Y"(0,¢0)0(F — 1.5
(| B, lm.) =~ Y7 (0,0)0(B — =) (15)

1.2.1 py— 7w

The p meson is spin 1 and it decays to two spin 0 pions. Suppose that the pisinthe [=1,m =1
state, where there is some z-axis defined by something. The final state has the same angular
momentum quantum numbers and the amplitude to find a 7 with momentum in the k direction is

(k| E,1,m) o« Y; (k) o sin 6

The angular distribution of the 7 is
[V ~ sin? 6
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If we imagine producing p in ete™ collisions where electrons and positrons are polarized so that
j» = +1 along the z-axis defined by the direction of the positron beam, then

%(9) o sin? 6

1.2.2 Back to partial wave expansion
Substituting into Equation 1.29 we have

1 2m

f(K k) = —Eﬁ&r?’/dE/dE’Z SO EL U, m! (B U m Ty E,1L,m)(E,l,m | k)

Lym U'm’
_ 1 2m 3 / / /
= — 2o /dE/dE IZ<k | B, 1, m)Ty(E,l,m | k)

1 2m h RE? . h 12k
= —— =381 [dE [ dE' Y ———=Y"(K)0(E' — ——)T}——=Y,""(k)0(E —
g [ 4 [ 48 0 ey 0a(E
1 2m 3 h2 *
= ——— —Y"(K)Y," (k)T
47Th28ﬂ§kml()l()l
472 *
— _% Y'l’m(k/)yvl’m(k) fIvl
l,m
Let k = |k|2 so that § = 0, ¢ =? and then Y™ (k) = 1/2£16,,0. So only m = 0 contributes. Then
YO (k) = %Pl(cos 0) where 0 is the angle between k and k’. The scattering amplitude becomes
472 2041 s
k' k)=—— PO, = —- 20+ 1)PR, 0T, 1.
SOl = === 3 = RO kzlj<+>l<cos)l (1.6)
Define f;(k) = —%(E) and
O X) = (21 + 1) Po(cos 0) fi(k) (17)

l

fi(k) is amplitude to scatter an incident particle with angular momentum 7l or impact parameter
b such that kb = I. Remember that the outgoing solution to the SE far outside the range of the
potential is

1 ikr

pto= W) [eikz+f(9)e ]

r
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1.2.3 Expansion of plane wave as spherical waves

The radial part of the free particle Schrodinger equation is

2 d%u I(1+1)R?
C2m dr? + [V(r) + 2mr? } u=Eu

The solution to the free particle Schrodinger equation in spherical coordinates is
(x| E,l,m) = ciji(kr)Y;" (£).

Next expand the plane wave as a linear combination of incoming and outgoing spherical waves.

zkx
(x| k) = FEEE Z/dEx|E,l,m)<E,l,m|k>
h h2k2
= dEc;j(kr)Y,™ (£ o(E — Y™ (k
zmj/ i)Y () 0 — ) (R
B (2l+1) . h .
— ; y Pi(k r)mcm(kr)
where we use the addition theorem
mpavomiry 2T o
;Yl (®)Y"™k) = = —Ri(k-1)

Turns out that ¢ = %\/ 2:’:’“ so that

e™* = (20 + 1)itjy (kr)Py(k - £
l

]
~

Asr — oo,
k) _ g—ilkr—(m)

ik-x
e — ;(21 +1) Sekr P;(cos ) (1.8)

1.2.4 Partial wave expansion

Now
= e () 1.9
Y= W) e (9) . (1.9)
Yt = Fz (21 + 1) Ay (r) Py(cos 6) (1.10)
= (21 + 1) (¢t hi (r) + cihi(r)) Pi(cos 6) (1.11)
A 2
Remember that for large r,
ei(kr—(ln’/Q) e—i(kr—(lﬂ/2)
| W (1.12)
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becomes, usin
8 ei(kr—(lﬂ/?)) _ e—i(k:r—(lTr/Q))

2ikr
Anyway, we can write, the general solution to the Schrodinger equation in the partial wave basis,
far from the scattering potential as

Ji(kr) = (large r) —

i(kr—(m/2)) _ Clefi(krf(lﬂ’/Q))

1 . e
welastic == 7/}+ = Z Zl(2l —+ ]_) il
l

v/ 8m3 2ikr
1 meiEr) — g e—ilkr—(im)
= L p— 20+ 1
¥ /873 ;( +1) 2ikr
Then since .
1 ixk 1 ernr
welastzc - We - (271_)3/2 f(e) r

we know that ¢; = 1 so that the ingoing wave is the same. Therefore

L — oyt — E -l 2+ 1 i(kr—In/2) _ _—i(kr—Im/2)
ql}elastzc w \/8? %ukr l 1 ( + )(7716 e )
Probablity conservation requres || < 1. If || = 1, the scattering is pure elastic and each partial

wave gets some phase shift. If 7 = 0 the scattering for that partial wave is purely inelastic.
And we know that

m—1_ f

2ik !

_ e—i(kr—lﬂ')

B ez’kr eik'r‘
Yt = (27T)73/2) Z(Ql + 1)P;(cos ) (21]@7’) + f(0) ” 1

L I

[ eikr _ efi(krfl‘n') eikr
- W Z(2l + 1)P;(cos 0) <21kr> + Z(?l + 1)Py(cos0) fi(k) . ]

l l

—i(kr—Im)

I eikr e
= G > (21 + 1)Py(cos ) (1 + 2ik f(6)) (%kr) + 212(25 + 1) Py(cos H)MT]

L I

Unitarity requires that flux is conserved for each angular momentum state. Outgoing flux is no
more than incoming. Therefore

11+ 2ikfi(0)] =[] <1 (1.13)

and equal to one for elastic scattering.
For elastic scattering we define a phase shift

1+ 2ikfy(9) = e (1.14)
The elastic partial wave amplitude

e _ 1 eWiginyg,
fi(0) = 2%k k
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and

f(0) % Z (20 + 1)e™ sin &, P;(cos 0)
1

The total cross section is

[ a3 1+ PP R os)
l

Ot
= 4r > (@2+1)|fi
l

= %Z(%H)lm—ll2 53 @+ D (ml? + 1 - 2R())
l l

If the scattering is elastic then the total cross section is

1
Ocla = ﬁ/dQZ(QH—1)2sin251Pl2(c059)
1
4
= kg (20 + 1) sin? &

where n; = €2,

(1.15)

(1.16)
(1.17)

(1.18)

(1.19)

Suppose that there is an inelastic component, so that the magnitude of the

outgoing wave at momentum k in s is less than the magnitude in the incoming plane wave.
Then || < 1. The inelastic cross section is the piece lost from the outgoing, namely 1 — |n;|2.

Therefore )
(1—|ml*)

Oinelastic — dr Z(Ql + 1) |22k|2

= @)~ )

And the optical theorem 7

£O) = ;(21—1—1)7”2;;}’1(0059)

Imf(0) = —2(214—1)8‘%(7”2;1)

27
Otot = ~732 20+ 1)R(m — 1)

l

The inelastic cross section is the difference of the total and the elastic

Oine = Otot — Oelas

= S )R- 1) -

2 20+ 1)(Jm|* + 1= 2R(m))

k2
l l

= 52 @+ DA~ |n)
l

(1.20)
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1.2.5 General solution

Far from the scattering center where V' — 0, the solution to the free particle Schrodinger equation

is a linear combination of spherical bessel functions.

1 .
AN @) Zzl(Ql + 1)A;(r)Pi(cos 6)
l
1 .
= G > it @1+ 1) (¢l by (r) + ¢ hi (1)) Pi(cos 0)
1
Remember that for large r,
ei(kr—(ln’/Q) ) e—i(kr—(lﬂ/2)
L ikr 7 L ikr

Meanwhile, in terms of the scattering amplitude and phase shift we write

N 1 ol + 1\P 216, pikr efi(krflﬂ')
V= B zl:( +1) l{ Sikr  2ikr

Comparison with Equation 1.49 gives ¢; = 2% and ¢} = . Then

1 5.5 . . 1, . .
Al(r) = cthi(r)+chi(r) = 562’61 (Ji +iny) + 5(31 —iny)

= %ei‘sl ((cos &y + isind;)(j; + iny) + (cos & — isindy) (j; — iny))

= ¢ (cos §yj; — sindyny)

(1.21)

(1.22)

(1.23)

(1.24)
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1.2.6 Hard Sphere scattering

The probability of finding the particle inside the radius R of the sphere is zero. It is zero at the
boundary. So

YT (R) = j1(kR) cos &, — ny(kR) siné; = 0 (1.25)
Ji(kR)
As we have determined all of the phase shifts, we can compute the exact differential cross section.
Let’s consider the limits. Suppose that the energy of the incoming particle is very low. So low that
the angular momentum #kR < h. Then only the [ = 0 partial wave will contribute. Partial waves
with { > 0 have zero amplitude of appearing at R. Also consider the small = limit of j;(x), n;(x).

Ji(kR) cosé; = ni(kR) sind; — tand; = (1.26)

lim 20

i) = Grem®
. en 1
(@) = =or o1

@1
(20 + 1)(20)!

Clearly the [ = 0 partial wave is the most important component of the wave function when kR < 1.
The | = 0 phase shift is

— lim tand;
kR—0

sin kR/kR
_ - = 1.2
tan dg = c skR/KR tankR — 6p = kR ( 7)

The differential cross section for s-wave scattering is
d 1
d% = /()P = | sinkR]” ~ R* (1.28)

No angular dependence of course. The total cross section is oy = 4mR2, four times the geometric
cross section.

In the limit of high energy, where kR > 1, we can use the asymptotic form for j; and n;. Then
all partial waves with [ < kR will contribute.

sin(kR — %)

k]l%linoojl(kR> = —r (1.29)
. _ cos(kR—15%)
Jim m(kR) = - (1.30)
(1.31)
Then
. ™
Ml%linootandl = —tan(kR—lg) (1.32)
sin?6, = sinQ(kR—lg) (1.33)
/dQ|f(0)\2 - ‘% (2l+1)sin2(kR—lg) (1.34)
l
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So let’s sum to kR.

/dQ|f(9)\2 - ‘:; i+ 1sin® (k12— 15) (1.35)
=0

N kQ(kR(kRJrl))l (1.36)

~ 2mwR? (1.37)

Now the total cross section is only twice the area of the sphere. What goes on?
Let’s consider the scattering amplitude again

62i5l _ 1

fu(8) = Toik = fiseat t fi0 (1.38)

where f] scqt is the part that is scattered off the sphere, and f; o is the piece of the outgoing wave
that was there in the first place. We have that

[t = [
/

2
ds?

oo

Z 21 + 1 fl scat-Pl(e)

X = 4 4 N
Z Z 2l + ]. 2ll + 1)\/(2l T 1) \/(2l/ n 1) fl,scatY}(](g)fl’,scatyvl/()(e) dQ

=

Z 2l+1 flscat‘
=0
)

— ( 7TR2



