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Lecture XI

1.1.1 Hard Sphere scattering

The probability of finding the particle inside the radius R of the sphere is zero. It is zero at the
boundary. So

ψ+(R) = jl(kR) cos δl − nl(kR) sin δl = 0 (1.1)

jl(kR) cos δl = nl(kR) sin δl → tan δl =
jl(kR)

nl(kR)
(1.2)

As we have determined all of the phase shifts, we can compute the exact differential cross section.
Let’s consider the limits. Suppose that the energy of the incoming particle is very low. So low that
the angular momentum ~kR� ~. Then only the l = 0 partial wave will contribute. Partial waves
with l > 0 have zero amplitude of appearing at R. Also consider the small x limit of jl(x), nl(x).

lim
x→0

jl(x) =
2ll!

(2l + 1)!
xl

lim
x→0

nl(x) = − (2l)!

2ll!

1

xl+1

→ lim
kR→0

tan δl ∼
(2ll!)2

(2l + 1)(2l)!
x(2l+1)

Clearly the l = 0 partial wave is the most important component of the wave function when kR� 1.
The l = 0 phase shift is

tan δ0 =
sin kR/kR

cos kR/KR
= − tan kR→ δ0 = kR (1.3)

The differential cross section for s-wave scattering is

dσ

dΩ
= |f(θ)|2 = |1

k
sin kR|2 ∼ R2 (1.4)

No angular dependence of course. The total cross section is σt = 4πR2, four times the geometric
cross section.

In the limit of high energy, where kR� 1, we can use the asymptotic form for jl and nl. Then
all partial waves with l ≤ kR will contribute.

lim
kR→∞

jl(kR) =
sin(kR− lπ2 )

kR
(1.5)

lim
kR→∞

nl(kR) = −
cos(kR− lπ2 )

kR
(1.6)

(1.7)
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Then

lim
kR→∞

tan δl = − tan(kR− l π
2

) (1.8)

sin2 δl = sin2(kR− l π
2

) (1.9)∫
dΩ|f(θ)|2 =

4π

k2

∑
l

(2l + 1)sin2(kR− l π
2

) (1.10)

So let’s sum to kR. ∫
dΩ|f(θ)|2 =

4π

k2

kR∑
l=0

(2l + 1)sin2(kR− l π
2

) (1.11)

∼ 4π

k2
(kR(kR+ 1))

1

2
(1.12)

∼ 2πR2 (1.13)

Now the total cross section is only twice the area of the sphere. What goes on?
Let’s consider the scattering amplitude again

fl(θ) =
e2iδl − 1

2ik
≡ fl,scat + fl,0 (1.14)

where fl,scat is the part that is scattered off the sphere, and fl,0 is the piece of the outgoing wave
that was there in the first place. We have that

∫
|fscat|2dΩ =

∫ ∣∣∣∣∣
∞∑
l=0

(2l + 1)fl,scatPl(θ)

∣∣∣∣∣
2

dΩ

=

∫ ∣∣∣∣∣
∞∑
l=0

∞∑
l′=0

(2l + 1)(2l′ + 1)

√
4π

(2l + 1)

√
4π

(2l′ + 1)
fl,scatYl0(θ)fl′,scatY

∗
l′0(θ)

∣∣∣∣∣
2

dΩ

= 4π

l=Rk∑
l=0

(2l + 1)|fl,scat
2ik

|2

=
π(kR)2

k2
= πR2

2



1.2. SPIN DEPENDENT SCATTERING

1.2 Spin dependent scattering

We begin by generalizing the transition operator to include spin. Then〈
k′ | T | k

〉
→ 〈k′, νf | T | k, νi〉 (1.15)

The scattered state is

ψ+ =
1

(2π)3/2

ei(ki·r)| νi〉+
eikr

r

∑
νf

| νf 〉f(kfνf ;kiνi)

 ,

so that
dσi→f
dΩ

= |f(kfνf |kiνi)|2.

The transition operator now acts in spin space as well as momentum space and we can write

〈k′, νf | T | k, νi〉 → 〈νf |M(k′,k) | νi〉 (1.16)

Let’s construct an operator M that is invariant with respect to parity and time reversal, and
rotations. According to that last requirement it is a scalar. If we suppose that initial and final
states have spin 1

2 and the scattering potential is spherically symmetric, (to keep it simple), then it
is a 2 x 2 Hermitian operator. The most general such operator is constructed as a linear combination
of the identity matrix and the pauli matrices. The available kinematic parameters are the initial
and final momenta and spin. The scalar combinations are

(k′ × k) · σ, (k′ − k) · σ, (k′ + k) · σ

The first will be a scalar and the second and third pseudo-scalar, (since spin is a pseudo vector).
The most general transition scattering operator has the form

M(k′,k) = g1 + g2(k′ × k) · σ + g3(k′ − k) · σ + g4(k′ + k) · σ (1.17)

The third and fourth terms are not invariant with respect to parity as the momentum vector changes
sign but the angular momentum vector does not. Only the first and second terms are allowed for
a parity conserving process. Note also that the third term is not time reversal invariant. Time
reversal changes the sign of both momentum and spin and ki → kf . So the most general form
for the scattering operator that is rotationally invariant and preserves time and space reversal
symmetry is

M(kf ,ki) = g1(k, θ) + g2(k, θ)σ · k′ × k

|k′ × k|
= g1(k, θ) + g2(k, θ)σ · n̂ (1.18)

where n̂ is the unit vector perpendicular to the scattering plane. Of course Equation 1.42 is the
most general form of the scattering operator. The scattering potential might not interact with
the particle spin and then we would have that g2 = 0. But the potential is presumed rotationally
invariant, and invariant under reflection so that if g2 is not zero, then the most general form for
the potential is

V = V0(r) + σ · LV1(r) (1.19)

L being the only available axial vector in the space of the spatial coordinate (and parallel to n̂).
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