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1.1.1 Λ0 decay

Production: p+π− → Λ0 +K0 Decay Λ0 → π−+p In the rest frame of the Λ0 with the Λ0 spin + 1
2

along the z-direction there is some amplitude a that the proton will head up with spin + 1
2 and the

pion down to conserve momentum. And if the Λ0 is spin down there is some amplitude b that the
proton will head up with spin down. There is zero amplitude for either of the above with proton
spin reversed since angular momentum is not conserved and note that there is no z-component of
orbital angular momentum because the momentum is in the z-direction. The total probability or a
proton along the +z-direction is

Ptot(+z) = P+ + P− = |a
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Now suppose the Λ0 are polarized and we know that all have + 1
2 , then what is the probability that

the proton will be emitted in the z′ direction?
The amplitude for spin + 1

2 in the z′ direction is
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The

Ptot(+z
′) = |a cos θ/2|2 + |b sin θ/2|2

= |b|2 − (|b|2 − |a|2) cos2 θ/2 = b2 − (b2 − a2)
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If |a| = |b| (parity is conserved), then the distribution is isotropic.
Alternatively we can consider more generally the implications of the conservation of angular

momentum for the final state wave function. We suppose that in the initial state, the Λ0 has spin
j = + 1

2 and jz = +1
2 . Then of course the final state has the same quantum numbers. But in the

final state there is orbital as well as spin angular momentum. The most general form of the final
state wave function is
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c1 and c2 are CB coefficients.
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1.1.2 Time reversal

Time reversal is a tricky business. First consider a classical example. Suppose a planet is in orbit
about the sun. At some time say t = 0 it has a velocity v(0). If we reverse the velocity so that
v(0)→ −v(0) then the planet will retrace it’s trajectory so that xR(t) = x(−t) and vR(t) = −v(−t)
where xR(t) is the position of the reversed planet at t and vR(t) is the velocity of the reversed planet
at time t. So we reverse the state and propagate by t and we should end up with exactly the same
position and velocity as if we had propagated the original state by −t and then reversed the velocity.

Now quantum mechanics. We have a state | ψ〉 and | ψR〉 the reversed state and suppose we
have some operator that effects the reversal so that

It| ψ〉 = | ψR〉

If | ψ〉 = | p′〉 represents a state with definite momentum then | ψR〉 = | −p′〉 and we expect that

p| ψR〉 = −p′| ψR〉

and 〈
ψR | p | ψR

〉
= −〈ψ | p | ψ〉 → I−1t pIt = −p

So far so good. The reversed state at time t, | ψ(t)R〉, should be the same as the original state
at −t and then reversed. So we have the state at t = 0 and we reverse it and propagate it by an
infinitesimal time δt. Meanwhile we propagate the original state by −δt and then reverse it and we
should end up in the same place. That is

(1− i

~
Hδt)It| ψ〉 = It(1 +

i

~
Hδ)| ψ〉 → iHIt = −ItiH (1.1)

Unitary and anti unitary operators

The parity operator π, like all of the others that we have discussed, is unitary. We found that
π2| α〉 = | α〉 so we see that ππ = 1. Therefore π = π−1 and π = π†. Finally

〈
α | π−1π | β

〉
=

〈α | β〉. The parity operator preserves the inner product.
We like unitary operators so that the inner product is invariant. In particular, if U is unitary

then U | α〉 = | α〉′ and U | β〉 = | β〉′ and

〈α′ | β′〉 =
〈
α | U†U | β

〉
= 〈α | β〉

which is nice but perhaps not essential. What is essential is that

|〈α′ | β′〉| = |〈α | β〉|.

It turns out that this transformation is necessarily unitary or anti-unitary. Those are the only
possibilities. As we will see in a moment a unitary operator does not work for time reversal. We
consider an anti-unitary operator It such that It| α〉 = | α′〉 and It| β〉 = | β′〉 but now

〈α′ | β′〉 = 〈α | β〉∗

so we preserve length but perhaps not phase. In practice if

| ψ〉 = a1| 1〉+ a2| 2〉
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then
It| ψ〉 = a∗1It| 1〉+ a∗2It| 2〉

In general we can write an anti-unitary operator as the product of a unitary operator and the
complex conjugation operator. That is

It = UK, I−1t = KU†

where U is unitary and K takes the complex conjugate of the coefficients. The anti-unitary trans-
formation is not useful as a member of a continuous group because applying It twice results in a
unitary transformation and we like the composition rule where we can apply two transformations
to get a third. The only candidates for an anti-unitary transformation are where T 2 gets you back
where you started, namely parity and time reversal, charge conjugation, interchange.

Transformation of H under time reversal

Now back to the problem at hand. Referring back to Equation 1.1, if It is unitary then we conclude
that HIt = −ItH and for some eigenket of H

ItH| n〉 = ItEn| n〉 = EnIt| n〉 = −ItH| n〉 = −EnIt| n〉

which says that we have an eigenket of H with negative energy. That makes no sense. If we have a
free particle and turn it around, we don’t get negative energy since energy scales as p2. The other
choice is that It is anti-unitary. Then Equation 1.1 gives us

HIt = ItH → [H, It] = 0

Expectation value of anit-unitary operator

Suppose that
| α̃〉 = It| α〉, | β̃〉 = It| β〉

and It is anti-unitary. Then 〈
β̃ | α̃

〉
= 〈α | β〉

and if | γ〉 = A†| β〉 then

〈β | A | α〉 = 〈γ | α〉 = 〈α̃ | γ̃〉 =
〈
α̃ | ItA† | β

〉
=
〈
α̃ | ItA†I−1t It | β

〉
=
〈
α̃ | ItA†I−1t | β̃

〉
So the rule for the anit-unitary operator It is that for any linear operator A,

〈β | A | α〉 =
〈
α̃ | ItA†I−1t | β̃

〉
If A is Hermitian then

〈β | A | α〉 =
〈
α̃ | ItAI−1t | β̃

〉
An observable is even or odd if

ItAI
−1
t = ±A.

Therefore
〈α | A | α〉 = ±

〈
α̃ | ItAI−1t | α̃

〉
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Transformation of position and angular momentum

The expectation value of position does not change under time reversal so

I−1t xIt = x

In order that time reversal operation to effect no geometrical transformation it must be that angular
momentum is odd. Then

I−1t DIt = I−1t e−
i
~J·φIt = e

i
~ I

−1
t J·φIt = D

as long as I−1t JIt = −J and this is also in agreement with the notion that x is even and p is odd.

Uncertainty principle

In view of the above

[xi, pj ] = i~δij
It[xi, pj ]I

−1
t = Iti~δijI−1t

[xi,−pj ] = −i~δij

so the uncertainty principle hangs together. Note that ItJI
−1
t = −J is required so that

It[Ji, Jj ]I
−1
t = Iti~εijkJkI−1t

Scattering amplitude

Suppose we have a state in a basis of kets | n〉 and its time reversed counterparts | nR〉 and It| n〉 =
| nR〉. Then

| ψ〉 =
∑
n

| n〉〈n | ψ〉

It| ψ〉 = | ψR〉 =
∑
n

| nR〉〈n | ψ〉∗ =
∑
n

U | n〉〈n | ψ〉∗

Also

| φ〉 =
∑
m

| m〉〈n | φ〉

It| φ〉 = = | φR〉 =
∑
n

U | m〉〈m | φ〉∗

Then 〈
φR | ψR

〉
=
∑
m,n

〈m | φ〉
〈
m | U†U | n

〉
〈n | ψ〉∗ = 〈ψ | φ〉

So suppose we have | ψ〉 as the initial state and | φ〉 as the final state and we are interested in the
amplitude

〈φ | A | ψ〉
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where A is any operator. We showed that the forward and reversed amplitudes are related according
to 〈

ψR | ItAI−1t | φR
〉

= 〈φ | A | ψ〉
If A is Hermitian and invariant under time reversal〈

ψR | A | φR
〉

= 〈φ | A | ψ〉

Wave function

How does the wave function transform? First let’s note that if ψ(t) is a solution to Schrodinger’s
equation then ψ(−t) in general is not because of that first derivative. On the other hand ψ∗(−t) is
a solution as we can see by taking the complex conjugate of

i~
∂

∂t
ψ(t) = Hψ(t)

where H is real. More generally,

〈x | α, t〉 =
〈
x | e−iHt/~ | α

〉
,

〈
x | α, tR

〉
=
〈
x | e−iHt/~ | αR

〉
Now | x〉 is invariant under time reversal so〈

x | e−iHt/~ | αR
〉

=
〈
xR | e−iHt/~ | αR

〉
=
〈
α | IteiHt/~I−1t | x

〉
=
〈
α | e−iHt/~ | x

〉
→ ψR(x, t) = ψ∗(x,−t)

The angular part of the wave function written in terms of spherical harmonics will transform
according to

Ylm → Y ∗lm = (−1)mYl,−m

which suggests that
It| l,m〉 = (−1)m| l,−m〉

and
I2t | l,m〉 = | l,m〉 → I2t = 1

Spin 1/2

We have established that ItJI
−1
t = −J so it stands to reason that for spin 1/2 that

ItσI
−1
t = UKσKU† = Uσ∗U† = −σ

which means that
UσxU

† = −σx, UσyU
† = σy, UσzU

† = −σz
where we have used

σiσj + σjσi = 2δij

σiσj = 2δij − σjσi
→ σiσjσ

−1
i = 2δijσ

−1
i − σj

→ U = eiδσy
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Then

It| +〉 = eiδ
(

0 −i
i 0

)(
1
0

)
= ieiδ

(
0
1

)
= ieiδ| −〉

It| −〉 = eiδ
(

0 −i
i 0

)(
0
1

)
= −ieiδ

(
1
0

)
= −ieiδ| +〉

Also I2t | +〉 = eiδσyK
(
ieiδ| −〉

)
= eiδ(−ie−iδ)(−i)| +〉 = −1 In general

I2t = eiδσyKe
iδσyK = −σ2

y = −1

For integer spin I2t = 1 and for half integer spin I2t = −1. For half integer spin, I2t = (−1)N where
N is the number of half integer spin particles.

We can generalize to arbitrary spin by noting that an eigenket in the direction n̂ can be written

| n̂,+〉 = e−iJzα/~e−iJyβ/~| +〉
It| n̂,+〉 = e−iJzα/~e−iJyβ/~It| +〉 = η| n̂,−〉

Meanwhile we might have written

| n̂,−〉 = e−iJzα/~e−iJy(π+β)/~| +〉

Together we get
It = ηe−iJyπ/~K

It reduces to It = eiδ
2Sy

~ K when j = 1
2 . Now

I2t = ηe−iJyπ/~Kηe−iJyπ/~K = ηe−iJyπ/~η∗eiJ
∗
yπ/~ = |η|2e−i2πJy/~

where we have used J∗y = −Jy. It is evident that for half integer j, I2t = −1.
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1.2. SYMMETRY PROPERTIES OF SCATTERING AMPLITUDES

1.2 Symmetry Properties of Scattering Amplitudes

If the interaction is rotationally invariant, the amplitude can depend only on |k|2, |k′|2 and k · k′.
Then the scattering amplitude depends only on k and the scattering angle θ.

f(k′,k) = f(k, θ)

If the interaction is reflection invariant

f(k′,k) = f(−k′,−k)

What about time reversal. For any two states | a〉 and | b〉, operator A, and time reversal
operator It

〈a | A | b〉 =
〈
bR | ItA†I−1t | aR

〉
.

If the scattering potential V is invariant with respect to time reversal then

| k+〉 = | k〉+
1

E −H0 + iε
V | k+〉

It| k+〉 = | −k〉+
1

E −H0 − iε
V It| k+〉

Define

| k−〉 = | k〉+
1

E −H0 − iε
V | k−〉

as the state with incoming spherical wave that scatters into the momentum eigenstate k. Then

It| k+〉 = | −k−〉

Under time reversal incoming and outgoing states are reversed.
Another way to write an expression for the scattered state is to recognize that

(E −H0)| k〉 = 0

→ (E −H)| k〉 = −V | k〉

→ | k〉 = | k±〉 − 1

E −H ± iε
V | k〉

→ | k±〉 =

(
1 +

1

E −H ± iε
V

)
| k〉

Next define:

T = V + V
1

E −H ± ıε
V

Then 〈
p | V | k+

〉
= 〈p | T (E) | k〉 iff Ek = Ep = E,

=
〈
p− | V | k

〉
iff Ep = Ek.
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1.2. SYMMETRY PROPERTIES OF SCATTERING AMPLITUDES

Now the effect of time reversal is

〈p | T | k〉 =
〈
−k | ItT †I−1t | −p

〉
because | kR〉 = | −k〉. If V is invariant under time reversal,

ItT
†I−1t = T

and 〈
−k | ItT †I−1t | −p

〉
= 〈−k | T | −p〉

and
f(p,k) = f(−k,−p).
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