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1.1.1 Time reversal

Time reversal is a tricky business. First consider a classical example. Suppose a planet is in orbit
about the sun. At some time say t = 0 it has a velocity v(0). If we reverse the velocity so that
v(0)→ −v(0) then the planet will retrace it’s trajectory so that xR(t) = x(−t) and vR(t) = −v(−t)
where xR(t) is the position of the reversed planet at t and vR(t) is the velocity of the reversed planet
at time t. So we reverse the state and propagate by t and we should end up with exactly the same
position and velocity as if we had propagated the original state by −t and then reversed the velocity.

Now quantum mechanics. We have a state | ψ〉 and | ψR〉 the reversed state and suppose we
have some operator that effects the reversal so that

It| ψ〉 = | ψR〉

If | ψ〉 = | p′〉 represents a state with definite momentum then | ψR〉 = | −p′〉 and we expect that

p| ψR〉 = −p′| ψR〉

and 〈
ψR | p | ψR

〉
= −〈ψ | p | ψ〉 → I−1t pIt = −p

So far so good. The reversed state at time t, | ψ(t)R〉, should be the same as the original state
at −t and then reversed. So we have the state at t = 0 and we reverse it and propagate it by an
infinitesimal time δt. Meanwhile we propagate the original state by −δt and then reverse it and we
should end up in the same place. That is

(1− i

~
Hδt)It| ψ〉 = It(1 +

i

~
Hδ)| ψ〉 → iHIt = −ItiH (1.1)

Unitary and anti unitary operators

The parity operator π, like all of the others that we have discussed, is unitary. We found that
π2| α〉 = | α〉 so we see that ππ = 1. Therefore π = π−1 and π = π†. Finally

〈
α | π−1π | β

〉
=

〈α | β〉. The parity operator preserves the inner product.
We like unitary operators so that the inner product is invariant. In particular, if U is unitary

then U | α〉 = | α〉′ and U | β〉 = | β〉′ and

〈α′ | β′〉 =
〈
α | U†U | β

〉
= 〈α | β〉

which is nice but perhaps not essential. What is essential is that

|〈α′ | β′〉| = |〈α | β〉|.

It turns out that this transformation is necessarily unitary or anti-unitary. Those are the only
possibilities. As we will see in a moment a unitary operator does not work for time reversal. We
consider an anti-unitary operator It such that It| α〉 = | α′〉 and It| β〉 = | β′〉 but now

〈α′ | β′〉 = 〈α | β〉∗
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so we preserve length but perhaps not phase. In practice if

| ψ〉 = a1| 1〉+ a2| 2〉

then
It| ψ〉 = a∗1It| 1〉+ a∗2It| 2〉

In general we can write an anti-unitary operator as the product of a unitary operator and the
complex conjugation operator. That is

It = UK, I−1t = KU†

where U is unitary and K takes the complex conjugate of the coefficients. The anti-unitary trans-
formation is not useful as a member of a continuous group because applying It twice results in a
unitary transformation and we like the composition rule where we can apply two transformations
to get a third. The only candidates for an anti-unitary transformation are where T 2 gets you back
where you started, namely parity and time reversal, charge conjugation, interchange.

Transformation of H under time reversal

Now back to the problem at hand. Referring back to Equation 1.1, if It is unitary then we conclude
that HIt = −ItH and for some eigenket of H

ItH| n〉 = ItEn| n〉 = EnIt| n〉 = −ItH| n〉 = −EnIt| n〉

which says that we have an eigenket of H with negative energy. That makes no sense. If we have a
free particle and turn it around, we don’t get negative energy since energy scales as p2. The other
choice is that It is anti-unitary. Then Equation 1.1 gives us

HIt = ItH → [H, It] = 0

Anti-unitary transformation of expectation value

Suppose that
| α̃〉 = It| α〉, | β̃〉 = It| β〉

and It is anti-unitary. Then 〈
β̃ | α̃

〉
= 〈α | β〉

and if | γ〉 = A†| β〉 then

〈β | A | α〉 = 〈γ | α〉 = 〈α̃ | γ̃〉 =
〈
α̃ | ItA† | β

〉
=
〈
α̃ | ItA†I−1t It | β

〉
=
〈
α̃ | ItA†I−1t | β̃

〉
So the rule for the anit-unitary operator It is that for any linear operator A,

〈β | A | α〉 =
〈
α̃ | ItA†I−1t | β̃

〉
If A is Hermitian then

〈β | A | α〉 =
〈
α̃ | ItAI−1t | β̃

〉
An observable is even or odd if

ItAI
−1
t = ±A.

Therefore
〈α | A | α〉 = ±

〈
α̃ | ItAI−1t | α̃

〉
2



Transformation of position and angular momentum

The expectation value of position does not change under time reversal so

I−1t xIt = x

In order that time reversal operation to effect no geometrical transformation it must be that angular
momentum is odd. Then

I−1t DIt = I−1t e−
i
~J·φIt = e

i
~ I

−1
t J·φIt = D

as long as I−1t JIt = −J and this is also in agreement with the notion that x is even and p is odd.

Uncertainty principle

In view of the above

[xi, pj ] = i~δij
It[xi, pj ]I

−1
t = Iti~δijI−1t

[xi,−pj ] = −i~δij

so the uncertainty principle hangs together. Note that ItJI
−1
t = −J is required so that

It[Ji, Jj ]I
−1
t = Iti~εijkJkI−1t

Scattering amplitude

Suppose we have a state in a basis of kets | n〉 and its time reversed counterparts | nR〉 and It| n〉 =
| nR〉. Then

| ψ〉 =
∑
n

| n〉〈n | ψ〉

It| ψ〉 = | ψR〉 =
∑
n

| nR〉〈n | ψ〉∗ =
∑
n

U | n〉〈n | ψ〉∗

Also

| φ〉 =
∑
m

| m〉〈n | φ〉

It| φ〉 = = | φR〉 =
∑
n

U | m〉〈m | φ〉∗

Then 〈
φR | ψR

〉
=
∑
m,n

〈m | φ〉
〈
m | U†U | n

〉
〈n | ψ〉∗ = 〈ψ | φ〉

So suppose we have | ψ〉 as the initial state and | φ〉 as the final state and we are interested in the
amplitude

〈φ | A | ψ〉
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where A is any operator. We showed that the forward and reversed amplitudes are related according
to 〈

ψR | ItAI−1t | φR
〉

= 〈φ | A | ψ〉
If A is Hermitian and invariant under time reversal〈

ψR | A | φR
〉

= 〈φ | A | ψ〉

Wave function

How does the wave function transform? First let’s note that if ψ(t) is a solution to Schrodinger’s
equation then ψ(−t) in general is not because of that first derivative. On the other hand ψ∗(−t) is
a solution as we can see by taking the complex conjugate of

i~
∂

∂t
ψ(t) = Hψ(t)

where H is real. More generally,

〈x | α, t〉 =
〈
x | e−iHt/~ | α

〉
,

〈
x | α, tR

〉
=
〈
x | e−iHt/~ | αR

〉
Now | x〉 is invariant under time reversal so〈

x | e−iHt/~ | αR
〉

=
〈
xR | e−iHt/~ | αR

〉
=
〈
α | IteiHt/~I−1t | x

〉
=
〈
α | e−iHt/~ | x

〉
→ ψR(x, t) = ψ∗(x,−t)

The angular part of the wave function written in terms of spherical harmonics will transform
according to

Ylm → Y ∗lm = (−1)mYl,−m

which suggests that
It| l,m〉 = (−1)m| l,−m〉

and
I2t | l,m〉 = | l,m〉 → I2t = 1

Spin 1/2

We have established that ItJI
−1
t = −J so it stands to reason that for spin 1/2 that

ItσI
−1
t = UKσKU† = Uσ∗U† = −σ

which means that
UσxU

† = −σx, UσyU
† = σy, UσzU

† = −σz
where we have used

σiσj + σjσi = 2δij

σiσj = 2δij − σjσi
→ σiσjσ

−1
i = 2δijσ

−1
i − σj

→ U = eiδσy
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Then

It| +〉 = eiδ
(

0 −i
i 0

)(
1
0

)
= ieiδ

(
0
1

)
= ieiδ| −〉

It| −〉 = eiδ
(

0 −i
i 0

)(
0
1

)
= −ieiδ

(
1
0

)
= −ieiδ| +〉

Also I2t | +〉 = eiδσyK
(
ieiδ| −〉

)
= eiδ(−ie−iδ)(−i)| +〉 = −1 In general

I2t = eiδσyKe
iδσyK = −σ2

y = −1

For integer spin I2t = 1 and for half integer spin I2t = −1. For half integer spin, I2t = (−1)N where
N is the number of half integer spin particles.

We can generalize to arbitrary spin by noting that an eigenket in the direction n̂ can be written

| n̂,+〉 = e−iJzα/~e−iJyβ/~| +〉
It| n̂,+〉 = e−iJzα/~e−iJyβ/~It| +〉 = η| n̂,−〉

Meanwhile we might have written

| n̂,−〉 = e−iJzα/~e−iJy(π+β)/~| +〉

Together we get
It = ηe−iJyπ/~K

It reduces to It = eiδ
2Sy

~ K when j = 1
2 . Now

I2t = ηe−iJyπ/~Kηe−iJyπ/~K = ηe−iJyπ/~η∗eiJ
∗
yπ/~ = |η|2e−i2πJy/~

where we have used J∗y = −Jy. It is evident that for half integer j, I2t = −1.
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1.2. SYMMETRY PROPERTIES OF SCATTERING AMPLITUDES

1.2 Symmetry Properties of Scattering Amplitudes

If the interaction is rotationally invariant, the amplitude can depend only on |k|2, |k′|2 and k · k′.
Then the scattering amplitude depends only on k and the scattering angle θ.

f(k′,k) = f(k, θ)

If the interaction is reflection invariant

f(k′,k) = f(−k′,−k)

What about time reversal. For any two states | a〉 and | b〉, operator A, and time reversal
operator It

〈a | A | b〉 =
〈
bR | ItA†I−1t | aR

〉
.

If the scattering potential V is invariant with respect to time reversal then

| k+〉 = | k〉+
1

E −H0 + iε
V | k+〉

It| k+〉 = | −k〉+
1

E −H0 − iε
V It| k+〉

Define

| k−〉 = | k〉+
1

E −H0 − iε
V | k−〉

as the state with incoming spherical wave that scatters into the momentum eigenstate k. Then

It| k+〉 = | −k−〉

Under time reversal incoming and outgoing states are reversed.
Another way to write an expression for the scattered state is to recognize that

(E −H0)| k〉 = 0

→ (E −H)| k〉 = −V | k〉

→ | k〉 = | k±〉 − 1

E −H ± iε
V | k〉

→ | k±〉 =

(
1 +

1

E −H ± iε
V

)
| k〉

Next define:

T = V + V
1

E −H ± ıε
V

Then 〈
p | V | k+

〉
= 〈p | T (E) | k〉 iff Ek = Ep = E,

=
〈
p− | V | k

〉
iff Ep = Ek.
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1.2. SYMMETRY PROPERTIES OF SCATTERING AMPLITUDES

Now the effect of time reversal is

〈p | T | k〉 =
〈
−k | ItT †I−1t | −p

〉
because | kR〉 = | −k〉. If V is invariant under time reversal,

ItT
†I−1t = T

and 〈
−k | ItT †I−1t | −p

〉
= 〈−k | T | −p〉

and
f(p,k) = f(−k,−p).
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