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1.2 Spin Dependent Scattering - II

1.2.1 Spin density matrix

If the initial spin state is | νn〉 with probability pi,n, then the probability to scatter to final state
〈νm | is

pf,m =
∑
n

pi,n| 〈νf |M | νi,n〉 |2

=
∑
n

pi,n 〈νf |M | νi,n〉
〈
νi,n |M† | νf

〉
= 〈νm |

[∑
n

M | νi,n〉pi,n〈νi,n |M†
]
| νm〉

→ ρf =
MρiM

†

TrρiM†M

where ρi is the spin density matrix of the initial state

ρi =
∑
n

| νn〉pi,n〈νn | (1.1)

and ρf is the density matrix of the final state. The density matrix is normalized so that Trρ = 1.
The differential cross section to scatter from | νn〉 with k to | νm〉 with k′ is

dσ

dΩ
=

∑
n,m

| 〈νm |M(k,k′) | νn〉 |2pi,n

= TrρiM
†M

If the initial state is unpolarized, then ρi = 1
Ns

= 1
2 . The differential cross section is

dσ

dΩ
=

1

2
TrM†M

=
1

2
Tr(g∗ + σ · n̂h∗)(g + σ · n̂h)

= (|g(k, θ|2 + |h(k, θ|2) (1.2)

The polarization is defined as the net spin. The final state polarization is

Pf = Trσρf

=
TrσM†ρiM

TrρiM†M

=
Trσ(g∗ + σ · n̂h∗)ρi(g + σ · n̂h)

TrρiM†M
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=
1

2

Trσ(g∗ + σ · n̂h∗)(g + σ · n̂h)

TrρiM†M

=
n̂h∗g + g∗n̂h

TrρiM†M

= 2
n̂<(h∗g)

|g|2 + |h|2

That there is a final state polarization for scattering from a potential that is spherically symmetric
and is in some sense a consequence of parity reversal invariance. Consider a particle traveling from
−∞ along the y-axis toward the origin and scattering in the x-y plane (plane of the paper), at
an angle θ with respect to y. n̂ is parallel to the z-axis (perpendicular to the plane of the paper).
Suppose the scattered particle is polarized so that P = Pxx̂ + Pyŷ + Pz ẑ.

1. Reflect by imagining a mirror in the x-z plane, (the plane perpendicular to the y-direction).
Then k → −k and k′y ĵ → −k′y ĵ. There is no change to k′x̂i The polarization becomes P →
−Pxx̂ + Pyŷ − Pz ẑ..

2. Rotate about the x-axis by π. Now k → −k (back where we started) and k′y ĵ → −k′y ĵ, also
back where we started. And P→ −Pxx̂− Pyŷ + Pz ẑ.

If there were a component of polarization in the x or y direction, the observer in the inverted world
would would find that the scattered particle ended up with a different polarization. If parity is
a good symmetry then the scattering amplitude must be the same in the inverted world. Only
polarization in the z-direction would remain unchanged after the transformations described so that
is all that is allowed.

1.2.2 Polarization measurement

Now suppose that the initial state has some net polarization Pi. The density matrix

ρi =
1

2
(1 + σ ·Pi) (1.3)

so that Pi = Trσρi = Pi. Then

Pf =
TrσM†ρiM

Tr(ρiM†M)

=
Trσ(g∗ + σ · n̂h∗)ρi(g + σ · n̂h)

Tr(ρiM†M)

=
Trσ(g∗ + σ · n̂h∗) 1

2 (1 + σ ·Pi)(g + σ · n̂h)

Tr(ρiM†M)

=
2n̂<(h∗g) + (|g|2 + |h|2)Pi

|g|2 + |h|2 + 2<(g∗h)Pi · n̂

What we want to know is the differential cross section (Equation 1.7).

dσ

dΩ
= TrρiM

†M
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=
1

2
Tr(1 + n̂ · Pi)(g

∗ + σ · n̂h∗)(g + σ · n̂h)

= (|g(k, θ)|2 + |h(k, θ)|2 + 2<(g∗h)Pi · n̂)

We find that the cross section depends on the direction of the polarization with respect to the
normal to the scattering plane and we want to exploit that dependence to measure the polarization
Pi and the relative size of g, the spin independent amplitude and h the spin dependent amplitude.

Suppose that the beam is traveling in the y-direction Pi is in the z- direction and it scatters in
the x-y plane. Place the left detector at angle θ to the left of the y-axis, and the right detector at
angle θ to the right of the y-axis. The normal n̂ will be in the positive z-direction for particles that
scatter into the left detector and in the negative z-direction for particles that scatter into the right
detector. Then the rate into the left and right detectors will depend on the polarization.

dσ

dΩ
(L) = (|g(k, θ)|2 + |h(k, θ)|2 + 2<(g∗h)Pi)

dσ

dΩ
(R) = (|g(k, θ)|2 + |h(k, θ)|2 − 2<(g∗h)Pi)

and proportional to the asymmetry

A =
σL − σR
σL + σR

=
2<(g∗h)Pi

(|g|2 + |h|2)

1.2.3 Double scattering

To determine <gh∗, send in unpolarized projectile from the left. It scatters in the x-y plane so
that n̂ is in the z-direction. Then scatter again and also just look at events in the x-y plane. Then
measure up down ±z asymmetry. The polarization after the first scatter is Pi and the up-down
asymmetry after the second A.

Pi = n̂
2<gh∗

|g|2 + |h|2

A =
2Pi<gh∗

|g|2 + |h|2

=

(
2<gh∗

|g|2 + |h|2

)2
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Proton Neutron Scattering

Protons and neutrons are both spin 1/2. We will need to extend our scattering matrix to 4 di-
mensions to include all the possible spin combinations fof the two particles. A proton and neutron
exist in a bound state as a deuteron with zero orbital angular momentum and one unit of total
angular momentum. J = 1. There is no j = 0 or l = 1 bound state. Therefore the forces between
the proton and neutron when the spins are aligned, is evidently different than when the spins are
opposite. At low energy, scattering is all s-wave and there will be no mixing of the single and triplet
states. We then write the scattering potential as

V = Vs + Vt

and the scattering matrix becomes

M = fs(θ)Ps + ft(θ)Pt

where Ps and Pt are the projection matrices for single and triplet states respectively.

1.2.4 Projection operators

We can determine the projection matrices by noting that the total angular momentum of two spin
1
2 states is

J =
1

2
(σp + σn)

and that
J2| 〉 = j(j + 1)| 〉

For a singlet state, J2| s〉 = 0 and for a triplet state J2| t〉 = 2 and for the state that is some
mixture of triplet and singlet

| ψ〉 = a| t〉+ b| s〉,

the operator J2 projects out the triplet component,

J2| ψ〉 = 2| t〉

Therefore

Pt = NJ2 = N

(
1

2
(σp + σn)

)2

= N
1

4
(σn

2 + σp
2 + 2σn · σp)

= N 2
4 (3 + σn · σp)

The normalization is determined by requiring

Pt = P 2
t = N2 1

4
(9 + 6σn · σp + (σn · σp)2)

= N2 1

4
(9 + 6σn · σp + (3− 2σn · σp))
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= N2 1

4
(12 + 4σn · σp)

= N2(3 + σn · σp)

→ N =
1

4

so that

Pt =
1

4
(3 + σp · σn)

Then since Ps + Pt = 1 we find

Ps =
1

4
(1− σp · σn)

1.2.5 Density matrix and differential cross section

The differential cross section for neutron proton scattering is

dσ

dΩ
= TrρiM

†M

where ρi is the spin density matrix of the initial state. As each of the initial state proton and
neutron can be in one of two spin states. Therefore density operator for the initial state is a 4X4
matrix. Remembering that the density operator is a Hermitian matrix with unit trace, there are
15 free parameters. We can write the spin density matrix as

ρ =
1

4
(1 + Pp · σp + Pn · σn +

∑
ij

Cijσ
i
pσ

j
n) (1.4)

Here Pp and Pn are the polarization of the protons and neutrons respectively and Cij is the
correlation matrix. Suppose for example that the proton and neutron are in a spin singlet state.
Proton and neutron polarization are both zero. But the spins are perfectly anti-correlated so that
Cij = −δij , that is the neutron is always spin up(down) if the proton is spin down(up).

Let’s compute the cross section for the case where the spins of protons and neutrons are random.
Then ρi = 1

4 and
dσ

dΩ
= TrρiM

†M =
1

4
Tr
(
|fs|2Ps + |ft|2Pt

)
where we use the fact thatPsPt = 0 and PsPs = Ps, etc. Taking the trace

dσ

dΩ
=

1

4

(
|fs|2 + 3|ft|2

)
The final state spin density matrix is

ρf =
MρiM

†

TrρiM†M

=
1
4 (|fs|2Ps + |ft|2Pt)

dσ/dΩ

=
1
4 (|fs|2(1− σn · σp) + |ft|2(3 + σn · σp))

4dσ/dΩ

=
1
4 ((|fs|2 + 3|ft|2) + (|ft|2 − |fs|2)σn · σp))

4dσ/dΩ
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Comparison with the general form of the density matrix in Equation ?? yields Ps = Pt = 0, and

Cij =
1
4 (|ft|2 − |fs|2)δij)

4dσ/dΩ

If the scattering amplitude for the triplet state is greater(less) than for the singlet state, the spins
of the scattered particles will be correlated (anticorrelated).
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