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Lecture XVII

Proton Neutron Scattering

Protons and neutrons are both spin 1/2. We will need to extend our scattering matrix to 4 di-
mensions to include all the possible spin combinations fof the two particles. A proton and neutron
exist in a bound state as a deuteron with zero orbital angular momentum and one unit of total
angular momentum. J = 1. There is no j = 0 or l = 1 bound state. Therefore the forces between
the proton and neutron when the spins are aligned, is evidently different than when the spins are
opposite. At low energy, scattering is all s-wave and there will be no mixing of the single and triplet
states. We then write the scattering potential as

V = Vs + Vt

and the scattering matrix becomes

M = fs(θ)Ps + ft(θ)Pt

where Ps and Pt are the projection matrices for single and triplet states respectively.

1.1.1 Projection operators

We can determine the projection matrices by noting that the total angular momentum of two spin
1
2 states is

J =
1

2
(σp + σn)

and that
J2| 〉 = j(j + 1)| 〉

For a singlet state, J2| s〉 = 0 and for a triplet state J2| t〉 = 2 and for the state that is some
mixture of triplet and singlet

| ψ〉 = a| t〉+ b| s〉,

the operator J2 projects out the triplet component,

J2| ψ〉 = 2| t〉

Therefore

Pt = NJ2 = N

(
1

2
(σp + σn)

)2

= N
1

4
(σn

2 + σp
2 + 2σn · σp)

= N 2
4 (3 + σn · σp)
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The normalization is determined by requiring

Pt = P 2
t = N2 1

4
(9 + 6σn · σp + (σn · σp)2)

= N2 1

4
(9 + 6σn · σp + (3− 2σn · σp))

= N2 1

4
(12 + 4σn · σp)

= N2(3 + σn · σp)

→ N =
1

4

so that

Pt =
1

4
(3 + σp · σn)

Then since Ps + Pt = 1 we find

Ps =
1

4
(1− σp · σn)

1.1.2 Density matrix and differential cross section

The differential cross section for neutron proton scattering is

dσ

dΩ
= TrρiM

†M

where ρi is the spin density matrix of the initial state. As each of the initial state proton and
neutron can be in one of two spin states. Therefore density operator for the initial state is a 4X4
matrix. Remembering that the density operator is a Hermitian matrix with unit trace, there are
15 free parameters. We can write the spin density matrix as

ρ =
1

4
(1 + Pp · σp + Pn · σn +

∑
ij

Cijσ
i
pσ

j
n) (1.1)

Here Pp and Pn are the polarization of the protons and neutrons respectively and Cij is the
correlation matrix. Suppose for example that the proton and neutron are in a spin singlet state.
Proton and neutron polarization are both zero. But the spins are perfectly anti-correlated so that
Cij = −δij , that is the neutron is always spin up(down) if the proton is spin down(up).

Let’s compute the cross section for the case where the spins of protons and neutrons are random.
Then ρi = 1

4 and
dσ

dΩ
= TrρiM

†M =
1

4
Tr
(
|fs|2Ps + |ft|2Pt

)
where we use the fact thatPsPt = 0 and PsPs = Ps, etc. Taking the trace

dσ

dΩ
=

1

4

(
|fs|2 + 3|ft|2

)
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The final state spin density matrix is

ρf =
MρiM

†

TrρiM†M

=
1
4 (|fs|2Ps + |ft|2Pt)

dσ/dΩ

=
1
4 (|fs|2(1− σn · σp) + |ft|2(3 + σn · σp))

4dσ/dΩ

=
1
4 ((|fs|2 + 3|ft|2) + (|ft|2 − |fs|2)σn · σp))

4dσ/dΩ

Comparison with the general form of the density matrix in Equation 1.4 yields Ps = Pt = 0, and

Cij =
1
4 (|ft|2 − |fs|2)δij)

4dσ/dΩ

If the scattering amplitude for the triplet state is greater(less) than for the singlet state, the spins
of the scattered particles will be correlated (anticorrelated).
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1.2. SCATTERING IDENTICAL PARTICLES

1.2 Scattering identical particles

For spinless bosons the space-wave function solution to Schrodinger’s equation is symmetric and
will have the form

〈x | ψ〉 = eik·x + e−ik·x +
eikr

r
(f(θ) + f(π − θ)) (1.2)

where x = x1 − x2 corresponding to particle 1 and 2. The differential cross section is

dσ

dΩ
= |f(θ) + f(π − θ)|2

= |f(θ)|2 + |f(π − θ)|2 + 2<f∗(θ)f(π − θ)

The ”classical” cross section for two identical particles is given by just the first two terms. We
will multiply by an overall 1

2 to account for that. The third interference term is purely quantum
mechanical and it will enhance the rate at θ = π/2.

Consider scattering of Helium nuclei. The most common isotope, He4 has zero spin. He3 has
spin 1

2 . The coulomb scattering, which dominates at low energy, is indifferent to the number of
neutrons, so to a very good approximation, the amplitude for

He3 + He4 → He3 + He4 (1.3)

is the same as for
He4 + He4 → He4 + He4 (1.4)

The differential cross section for scattering of distinquishable particles (process ??) is given by

dσ

dΩ
= |f(θ) + f(π − θ)|2 = |f(θ)|2 + |f(π − θ)|2

and for identical spin zero particles

dσ

dΩ
= |f(θ)|2 + |f(π − θ)|2 + 2<f∗(θ)f(π − θ)

Now suppose that we are scattering identical spin 1/2 particles, like electrons or He3 nuclei. The
particles can be in a singlet antisymmetric spin state and symmetric space wave function or a triplet
symmetric spin state and antisymmetric wave function. The scattering matrix is 2X2 as there are
four spin states to consider. There will be no mixing of singlet and triplet if parity is conserved
since the space wave functions are symmetric and antisymmetric respectively. If the particles are
distinguishable , like protons and neutrons,

M(k′,k) = Ms(k
′,k) +Mt(k

′,k)

The scattering matrix will then be written in terms of single and triplet separately.

M(k,k′) = [Ms(k,k
′) +Ms(−k′,k)] + [Mt(k,k

′)−Mt(−k′,k)]

The differential cross section is
dσ

dΩ
= TrρiM

†M (1.5)

where ρi is the density matrix of the initial state and the density matrix of the final state is

ρf =
MρiM

†

dσ/dΩ
(1.6)
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1.2. SCATTERING IDENTICAL PARTICLES

1.2.1 Identical fermions

Now back to identical particles. Again assuming no polarization in the initial state

dσ

dΩ
=

1

4
Tr(M†M)

=
1

4
Tr ([(fs(k, θ) + fs(k, π − θ))Ps + (ft(k, θ)− ft(k, π − θ))Pt]

× [(f∗s (k, θ) + f∗s (k, π − θ))Ps + (f∗t (k, θ)− f∗t (k, π − θ))Pt])

=
1

4

(
|fs(k, θ) + fs(k, π − θ)|2Ps + 3|ft(k, θ)− ft(k, π − θ)|2Pt

)
=

1

4

(
|fs(k, θ) + fs(k, π − θ)|2 + 3|ft(k, θ)− ft(k, π − θ)|2

)
The final state density matrix is

ρf =
1

4

([fs(θ) + fs(π − θ))Ps + (ft(θ)− ft(π − θ))Pt] [(f∗s (θ) + f∗s (π − θ))Ps + (f∗t (θ)− f∗t (π − θ))Pt]

dσ/dΩ

=
1

4

|fs(θ) + fs(π − θ)|2Ps + |ft(θ)− ft(π − θ)|2Pt

4dσ/dΩ

=
1

4

|fs(θ) + fs(π − θ)|2(1− σ1 · σ2) + |ft(θ)− ft(π − θ)|2(3 + σ1 · σ2)

4dσ/dΩ

=
1

4

|fs(θ) + fs(π − θ)|2 + 3|ft(θ)− ft(π − θ)|2 + |ft(θ) + ft(π − θ)|2 − |fs(θ)− fs(π − θ)|2σ1 · σ2)

4dσ/dΩ

If the amplitudes for scattering in singlet and triplet states are the same, that is if the forces are
spin independent (no σ1 · σ2 term in the potential and fs = ft), then

dσ

dΩ
= |f(k, θ)|2 + f(k, π − θ)|2 −<f∗(k, θ)f(k, π − θ) (1.7)

There is evidently no polarization in the final state density matrix, but there is a correlation and
the correlation is

Cij =
1

4

|ft(θ) + ft(π − θ)|2 − |fs(θ)− fs(π − θ)|2

4dσ/dΩ
(1.8)

and if fs = ft

Cij = −δij
<f(k, θ)f∗(k, π − θ)

dσ/dΩ
(1.9)

Unlike proton neutron scattering (distinquishable particles), there is a correlation even when the
interaction has no spin dependence. If there is a spin dependent interaction

V (r) = V0(r) + V1(r)σ1 · σ2

then the correlation is given by

Cij = δij
|ft(θ)− ft(π − θ)|2 − |fs(θ)− fs(π − θ)|2

3|ft(θ)− ft(π − θ)|2 + |fs(θ) + fs(π − θ)|2
(1.10)

At θ = π/2, there is perfect correlation and Cij = −δij .
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