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Lecture XVIII

Quantization of the E-M field

2.1 Classical E&M

First we will work in the transverse gauge where there are no sources. Then ∇ ·A = 0, ∇×A = B,
and E = − 1

c
∂A
∂t and Maxwell’s equations are

∇×B =
1

c

∂E

∂t

∇×E = −1

c

∂B

∂t
∇ ·E = 0

∇ ·B = 0

Combining the above gives a wave equation for the vector potential

∇2A− 1

c2
∂2A

∂t2
= 0

Start with periodic boundary conditions. Then there are plane wave solutions

ei(k·r−ωt)

where

k =
2π

L
(nxx̂+ ny ŷn + nz ẑ)

The plane waves form a complete orthonormal set.

1

V

∫
V

dr ei(k−k
′)·r = δkk′

1

V

∑
k

eik·(r−r
′) = δ(r− r′)

To go from periodi boundary conditions to a continuous spectrum

1

V

∑
k

→
∫

dk

(2π)3
,

V

(2π)3
δkk′ → δ(k− k′)

The expansion of the vector potential as plane waves is

A(r, t) =
1√
V

∑
k

[eik·rAk(t) + c.c.]

A is real. The transverse gauge conditions ∇ ·A = 0 → k ·A = 0. We get the time dependence
from the wave equation

Ak(t) = Ake
−iωt
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Then

E = −1

c

∂A

∂t
=

i

c
√
V

∑
k

ω[eik·rAk(t)− c.c.]

B = ∇×A =
i√
V

∑
k

[eik·rk×Ak(t)− c.c.]

2.1.1 Polarization

We need a mutually orthogonal pair of polarization vectors. We can use the real orthogonal unit
vectors εi, i = 1, 2 with

ε1 × ε2 = k̂, εkα · εkβ = δαβ

Or we can use complex circular polarization vectors

ek±1 = ∓ 1√
2

(εk1 ± iεk2)

The total energy is

H =
1

2

∫
d3r(E2 +B2)

and using the expansions of E and B in terms of A we can write the energy in terms of A as

H = 2
∑
k

k2|Ak(t)|2

We want to quantize the fields. The usual strategy is to identify canonically conjugate variables,
assign them operator status that obey the canonical commutation rule. Working backwards towards
what we learned when quantizing the harmonic oscillator. Indeed recognizing that plane waves that
represent A are a solution to the harmonic oscillator equation, we define

Qk(t) =
1

c
[Ak(t) + c.c.], Pk(t) = −ik[Ak(t)− c.c.]

We can rewrite

H =
1

2

∑
k

(P2
k + ω2Q2

k).

and hamilton’s equations

Ṗk = − ∂H

∂Qk
, Q̇k =

∂H

∂Pk

would allow us to work from Hamiltonian to equations of motion for A.
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2.2 Quantization

We raise the canonical variables to operator status and the commutation rules are

[Qkλ, Pk′λ′ ] = i~δkk′δλλ′ , [Qkλ, Qk′λ′ ] = 0, [Pkλ, Pk′λ′ ] = 0

Next define annihilation and creation operators

akλ =
1√
2~ω

(ωQkλ + iPkλ)

and a†. We find
[akλ, a

†
k′λ′ ] = δkk′δλλ′

Define the vector operator ak = ak1e1 + ak2e2 or ak−1e− + ak+1e+. Then

H =
∑
k

~ωk[a†k · ak +
1

2
] =

∑
kλ

~ωk[Nkλ +
1

2
],

In the heisenberg picture the equations of motion for ak are

i~ȧk(t) = [ak, H] = ~ωkak(t)

The operators ak are the quantum analog of the fourier coefficients A. Getting the units right we
assign

A→
√

~c/2kak(t).

Finally write the field operators in terms of ak.

A =
∑
k

√
~c

2V k
[ei(k·r)−ωtak + h.c.]

E = i
∑
k

√
~ck
2V

[eik·r−ωtak − h.c.]

B = i
∑
k

√
~c

2V k
[eik·r−ωtk× ak − h.c.]

Heisenberg equations of motion for the field operators give Maxwell’s equations. Momentum oper-
ator is constructed from field operators. Hermitian version is

P =
1

2c

∫
dr[E×B−B×E] =

∑
kλ

~kNkλ,

The momentum operator is originally constructed as the generator of translations. Let’s check it
out. The translation operator is

T (d) = e−id·P/~

Consider translation of the efield.

T †(d)E(r, t)T (d) = E(r− d, t)
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An infinitesmal translation would have the form

(1 + id ·P/~)E(r, t)(1− id ·P/~) = E(r)− d·∂E
∂r

Note that the expectaion value of E or B in a state with a definite number of photons is zero.
A coherent superposition of single photon states that satisfies

ak| z〉 = z| z〉

is

| z〉 = e−
1
2 |z|

2
∞∑
n=0

zn√
n!
| 〉n

has nonzero expectation value for electric and magnetic fields and represents a classical field.
The angular momentum in the classical field is

Jcl =
1

c

∫
dr[r× (E×B)]cl

which can be separated into intrinsic angular momentum (spin) that does not depend on the position
of the origin

Jspin =
1

2c

∫
dr(E×A−A×E),

and the part that does

Jorb =
1

2c

∫
dr

3∑
i=1

[Ei(r×∇Ai) + (r×∇Ai)Ei].

The spin part in terms of operators becomes

Jspin = −i~
∑
k

a†k × ak = ~
∑
kλ

λk̂nkλ

The one photon state has helicity λ = ±1.
The relation between single photon states and states with definite linear and angular momentum

is given by

| kjmλ〉 =

√
2j + 1

4π

∫
dnDj

mλ(n)∗a†λ(k)| 0〉,

a†(k)| 0〉 =

∞∑
j=1

j∑
m=−1

√
2j + 1

4π
Dj
mλ(n)| kjmλ〉

Note, the sum starts at 1. There is no zero helicty single photon state so there is no j = 0
contribution to angular momentum.
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